Смекни!
smekni.com

Химия и технология платиновых металлов (стр. 13 из 14)

Одним из наиболее распространенных кислородсодержащих экстрагентов является три-н-бутилфосфат (ТБФ). Исследования показали, что зависимость коэффициентов распределения при экстракции комплексов платиновых металлов из кислых сред ТБФ от концентрации кислоты проходит через максимум, причем величина Dмет. и CHCl в экстремальной точке зависят от природы экстрагируемого иона. Как правило, наличие максимума объясняют тем, что первоначально коэффициент распределения растет в связи с протонированием кислорода экстрагента, а затем падает за счет конкурирующего действия кислоты. Такой вид зависимостей характерен для экстракции анионных комплексов по гидратно-сольватному механизму с образованием в органической фазе комплексов состава [H+(H2O)x(ТБФ)y]n[MCl6]m. Ряд экстрагируемости для комплексов платиновых металлов имеет вид:

Au(III) > Pt(IV) > Pd(II) > Ir(IV) > Ir(III).

Извлечение возрастает по ряду ацидолигандов Cl-<Br-<I-, что обусловлено уменьшением гидратации и увеличением устойчивости комплексов. В ряду разбавителей н-гексан > толуол > 1.2‑дихлорэтан > хлороформ экстрагируемость комплексов три-н-бутилфосфатом обычно уменьшается вследствие взаимодействия экстрагента и разбавителя. Следйет отметить, что в области 6 М HCl извлечение платины(IV) намного выше, чем палладия(II). Для 90%-ного раствора ТБФ в гексане коэффициент разделения платины и палладия равен 1250, в толуоле он достигает значения 1640, т.е. возможно разделение этих металлов за одну ступень экстракции.

По мере замены заместителей R-O- в молекуле ТБФ на алкильные R – растет электронная плотность на фосфорильном кислороде, ответственном за комплексообразование, и, соответственно, возрастает экстракционная способность реагентов. В зависимости от строения углеводородных радикалов и длины углеродной цепи коэффициенты распределения изменяются следующим образом (показано на примере экстракции Pd(II) – CPd = 5·10-3 моль/л – из 3 М HCl 0.1 М раствором фосфиноксида в толуоле или бензоле):

Фосфиноксид DPd

Тригексил 1.07
Дигексилоктил 0.63
Тригексил 0.888
Диоктилгексил 1.03
Триоктил 0.75
Тринонил 1.00

В отличие от комплексов других платиновых металлов палладий(II) особенно эффективно извлекается серосодержащими экстрагентами – сульфидами формулой R2S. Обычно товарные продукты такого рода представляют собой смеси сульфидов в углеводородах. В процессе экстракции происходит отделение палладия от рутения, родия (коэффициенты разделения составляют 105¸ 106). Наиболее трудно отделяется серебро в азотнокислых растворах, поэтому целесообразен для достижения этой цели переход к солянокислым системам.

При экстракции органическими сульфидами и сульфоксидами (R2SO) последовательность перехода комплексов благородных металлов из водной фазы в органическую представляется так:

Au(III) > Pd(II) > Pt(II) >> Rh(III) > Ru > Ir(III).

Высокая избирательность сульфидов по отношению к иону Pd(II) обусловлена тем, что в отличие от нейтральных кислородсодержащих экстрагентов они с большим трудом протонируются и не извлекают анионные комплексы платиновых металлов. Экстракция протекает за счет непосредственной координации молекул экстрагента к извлекаемому иону. Наличие кислорода в сульфоксидах и сульфонах приводит к снижению электронной плотности на атоме серы, в результате экстракционная способность от сульфидов к сульфоксидам снижается. В этом случае не исключено протонирование кислорода и экстракция анионных комплексов.

В технологии аффинажа приходится сталкиваться с нитритными растворами, в которых платиновые металлы присутствуют в форме нитрокомплексов. Они практически не экстрагируются аминами из нейтральных сред, однако при подкислении растворов степень извлечения в органическую фазу возрастает. Так, пятистадийная экстракция платины(II), палладия(II), иридия(III) из нитритных растворов три-н-октиламином при рН 1–2 обеспечивает практически полное (> 99.9%) их извлечение. Характерно, что рутений экстрагируется из нитритных сред значительно лучше платины и палладия: при рН 3.5 – 4.2 DRu составляет 33.1, в то время как DPt = 0.87, DPd = 1.95.

В процессе экстракции нитрокомплексов платиновых металлов из нитритных растворов солями ЧАО они извлекаются в органическую фазу без разрушения внутренней координационной сферы. Установлено, что нитрокомплексы платины(II) и палладия(II) экстрагируются солями ЧАО в органическую фазу с высокими коэффициентами распределения даже из растворов, содержащих 40–60% NаNO2. Так, при экстракции комплексов [Pd(NO2)4]2- и [Pt(NO2)4]2 – (CМ = 0,001 моль/л) из 50%-ных по нитриту натрия растворов три-н-октилбензиламмонийхлоридом (ТОБАХ) в CCl4 (CТОБАХ = 0,003 М) получены DPd = 3.89 и DPt = 6.75. В тех же условиях ни родий(III), ни иридий(III) не экстрагируются ТОБАХ в CCl4: даже при экстракции [Rh(NO2)6]3- из раствора, содержащего 10% NаNO2: коэффициент распределения не превышает 0,1. В порядке уменьшения коэффициентов распределения нитрокомплексы располагаются следующим образом:


[Pt(NO2)4]2- > [Pd(NO2)4]2- > [Ir(NO2)6]3- > [Rh(NO2)6]3-.

Найдены условия количественного извлечения рутения и осмия в форме нитрозонитрокомплексов наиболее распространенными экстрагентами.

4.3 Сорбция комплексов платиновых металлов

Параллельно с развитием экстракционных методов велись поиски сорбентов, селективных к платиновым металлам. Сорбцию выгодно отличает от жидкостной экстракции технологичность и быстрота в исполнении, а также возможность работы с многокомпонентными природными и промышленными материалами: рудами, горными породами, продуктами аффинажного производства, в том числе бедными по содержанию металлов платиновой группы. Наиболее часто сорбционное концентрирование встречается в аналитической практике.

Сорбция – процесс поглощения газов, паров, растворенных веществ (сорбатов) твердыми и жидкими поглотителями (сорбентами). Различают следующие виды сорбции: адсорбция – поглощение веществ на поверхности твердого или жидкого тела; абсорбция – поглощение газов, паров или растворенных веществ во всем объеме твердой или жидкой фазы; хемосорбция – поглощение веществ твердыми или жидкими сорбентами с образованием химических соединений; капиллярная конденсация – образование жидкой фазы в порах и капиллярах твердого сорбента при поглощении паров вещества. На практике различные виды сорбции, как правило, сочетаются друг с другом. При концентрировании следовых количеств ценных компонентов наиболее часто встречается адсорбция и хемосорбция, последняя обычно происходит путем ионного обмена либо комплексообразования.

По способу осуществления сорбционные процессы делятся на статические и динамические. Главными характеристиками сорбционных процессов являются: коэффициент распределения (Kраспр) и степень извлечения сорбируемого вещества (R), выражения для которых приведены ниже:

qСТ

K распр =

QАВTcСж,

где qСT – количество поглощенного вещества С в твердой фазе;

QАВT-количество твердой фазы (сорбента);

cСж-концентрация вещества С в жидкой фазе.

начж - Сконж)×100

R=

Сначж

Сначж - концентрация сорбируемого вещества в исходном растворе;

Сконж – концентрация сорбируемого вещества в растворе после сорбции.

В качестве обобщенной характеристики сорбентов обычно используют удельную поверхность – площадь поверхности 1 г сорбента. Отметим также, что для сорбентов с определенным типом взаимодействующих с молекулами сорбата функциональных групп критерием служит концентрация функциональных групп на поверхности. Ионообменные сорбенты на основе полимерных органических матриц характеризуются величиной сорбционной емкости, т.е. числом молей вещества, поглощаемых 1 г ионообменника.

Применение сорбционных методов концентрирования и разделения платиновых металлов исторически связано с ионным обменом. Первоначально в качестве ионообменников использовали алюмосиликаты и цеолиты. Активное применение ионообменных методов для разделения близких по свойствам элементов началось 30–40 лет назад, в связи с синтезом в нашей стране и за рубежом большого числа органических соединений – ионитов, обладающих сильноосновными и сильнокислотными свойствами. Это хорошо известные сорбенты АВ‑17, Дауэкс‑1, КУ‑2, ЭДЭ‑10П, Дауэкс‑50 и др. Использование указанных ионитов позволило, в частности, решить задачу отделения следов платиновых металлов от значительно преобладающих количеств цветных, редкоземельных, щелочных и щелочноземельных металлов, однако трудность десорбции платиновых металлов с данных сорбентов помешала их широкому распространению.

Следующим этапом в развитии сорбционных процессов (60–80‑е годы) стало применение слабокислотных катионитов, слабоосновных анионитов и амфолитов, главными достоинствами которых является высокая селективность и возможность регулирования гранулометрического состава. Благодаря им, удалось решить задачу концентрирования платиновых металлов на фоне ионов меди, никеля, железа, кобальта, присутствующих в рудном платиносодержащем сырье.

Нельзя не отметить, что органические ионообменники имеют существенные недостатки, как то: набухаемость, невысокая механическая прочность, практически невозможность десорбции платиновых металлов с поверхности сорбента. Перечисленных недостатков лишены неорганические ионообменники – к ним относятся, например, оксигидратные сорбенты R2O3·nH2O, где R – Fe, Al, Zr, Y, Sm, Eu, отличающиеся, напротив, ненабухаемостью в растворителях, механической прочностью, термостабильностью и радиационной устойчивостью. Превосходя сорбенты на основе органической полимерной матрицы также и по скорости сорбции, неорганические сорбенты, безусловно, уступают им в эффективности и селективности по отношению к платиновым металлам.