Поведение арсенопирита при окислительном обжиге во многом аналогично поведению пирита. Интенсивное окисление арсенопирита начинается при температуре примерно 450° С и протекает с образованием в качестве промежуточных продуктов пирротина и магнетита:
2FeAsS + 1,5O2= 2FeS + As2O3 (газ),
3FeS + 5O2 = Fе3O4 + 3SO2,
2Fе3O4 + 0,5O2= ЗFе2О3.
При температурах выше 600° С окислению арсенопирита предшествует его диссоциация: 4FeAsS = 4 FeS + As4 (газ).
Газообразный мышьяк окисляется до трехокиси As4 +3O2= 2Аs2О3, а пирротин —до гематита.
Образующаяся трехокись мышьяка обладает высокой летучестью. При температуре 465° С упругость пара Аs2О3 равна 1 am. Поэтому мышьяк, окисленный до Аs2О3, переходит в газовую
фазу. Однако при избытке кислорода трехокись мышьяка может окислиться до пятиокиси: Аs2О3 + О2 == As2O5.
В зависимости от условий обжига и вещественного состава обжигаемого материала пятиокись мышьяка может оставаться В огарке в неизменном состоянии или вступать во взаимодействие с окислами железа, образуя арсенаты двух- и трехвалентного железа Fe3(AsO4))2 и FeAsO4. Так как пятиокись мышьяка и арсенаты железа практически нелетучи, мышьяк, окисленный до пятивалентного состояния, полностью остается в огарке. Последнее обстоятельство крайне нежелательно, так как при последующем планировании огарка мышьяк переходит в раствор и в ряде случаев полностью расстраивает осаждение золота цинковой пылью. Оборотное использование обеззолоченных цианистых растворов становится при этом практически невозможным. Кроме того, присутствие в огарке соединений пятивалентного мышьяка приводит к образованию пленок на поверхности золотых частиц, что затрудняет их растворение в цианистом растворе.[1]
В связи с этим при обжиге концентратов, содержащих арсенопирит, мышьяк необходимо переводить в газовую фазу. С этой целью обжиг мышьяковистых концентратов следует проводить в слабоокислительной атмосфере, что способствует образованию летучей трехокиси и сводит к минимуму окисление мышьяка до пятивалентного состояния.
Однако слабоокислительная атмосфера, благоприятствующая удалению мышьяка, не соответствует условиям максимального окисления сульфидной серы, для удаления которой требуется значительно более окислительная атмосфера. В связи с этим наиболее рациональным путем окисления золотомышьяковых концентратов является двухстадиальный обжиг. Первая стадия обжига, проводимая в условиях ограниченного доступа воздуха, имеет целью перевод мышьяка в виде Аs2О3 в газовую фазу. Полученный огарок поступает на вторую стадию, где при значительном избытке кислорода происходит окисление сульфидной серы. Такой двухстадиальный обжиг позволяет получить благоприятный для цианирования пористый огарок с невысоким содержанием сульфидной серы и мышьяка. Благодаря своим преимуществам двухстадиальный обжиг находит применение в практике золотоизвлекательных фабрик, перерабатывающих золотомышьяковые концентраты.
Примерно аналогичного эффекта можно достигнуть и при одностадильном обжиге, если при этом использовать принцип противотока, т. е. движение материала навстречу обжиговым газам. В этом случае исходный сульфидный концентрат в первый период обжига будет контактировать с уже частично использованными газами, имеющими поэтому невысокую концентрацию кислорода. Это обстоятельство способствует тому, что в первый период обжига будет удаляться мышьяк. По мере дальнейшего движения материала в печи он будет приходить в контакт с газом,
все более обогащенным кислородом, в результате чего на выходе из печи огарок будет свободен не только от мышьяка, но и серы. Принцип противотока широко используется при осуществлении подового обжига золотосодержащих сульфидных концентратов.
В настоящее время обжиг флотационных концентратов применяют на многих золотоизвлекательных предприятиях Канады, Австралии, ЮАР, Ганы, США и других стран.
До 1946 г. обжиг концентратов на всех без исключения фабриках осуществлялся в подовых печах. Этот вид обжига не потерял своего значения и до настоящего времени. Только в одной Австралии работает несколько десятков установок, осуществляющих обжиг концентратов на поду. Из всех существующих типов подовых печей наиболее пригодны для обжига золотосодержащих концентратов печи Эдвардса. Печь Эдвардса—это механизированная отражательная печь прямоугольного сечения. Она состоит из металлического кожуха, футерованного огнеупорным кирпичом. При высоком содержании серы в концентрате (выше 26%) обжиг может протекать автогенно, т. е. исключительно за счет тепла, выделяющегося при окислении сульфидов. При недостатке серы печь отапливают углем, мазутом, газом или дровами. С этой целью на одном конце печи расположена одна или две топки. На другом конце печи имеется специальное отверстие в своде, через которое загружают обжигаемый концентрат. Для перемешивания и продвижения материала во время обжига по длине печи установлен один или два ряда вращающихся гребков, приводимых в движение от общего вала, расположенного над печью. Вращение гребков обеспечивает многократное перемещение обжигаемого материала от одной стенки печи к другой и одновременное продвижение его вдоль печи. В результате этого достигается достаточная продолжительность пребывания материала в печи (3—6 ч) и создаются условия для его перемешивания.
В некоторых случаях печи Эдвардса имеют специальные приспособления для изменения угла наклона печи, что позволяет регулировать скорость прохождения материала через печь при изменении вещественного состава обжигаемого концентрата. На предприятиях небольшой производительности (до 7—10 т концентрата в сутки) используют печи с одним рядом гребков; при более высокой производительности (10—50 т/сутки) устанавливают печи с двумя рядами гребков.
Широкому распространению печей Эдвардса способствуют следующие их достоинства:
1) минимальный пылеунос при обжиге концентратов, не превышающий 0,5—1,0% от массы загружаемого материала. Низкий пылеунос позволяет работать без сложных пылеулавливающих систем. На большинстве золотоизвлекательных фабрик, применяющих подовый обжиг, газы очищают от пыли в циклонах или пылевых камерах;
2) относительная дешевизна, простота по конструкции и легкость в обслуживании. Обычные ремонтные операции в печи, такие как замена гребков и гребкодержателей, осуществляются снаружи печи без ее разгрузки и охлаждения. Каждую печь обслуживает один оператор;
3) возможность работы в широком диапазоне температур и обжига концентратов с различной гранулометрической характеристикой и различным химическим составом.
Однако наряду с достоинствами печи Эдвардса, как и всякие печи подового типа, имеют серьезные недостатки, главные из которых следующие:
1) относительно невысокая удельная производительность примерно 0,25 m/(м2- сутки);
2) неравномерное распределение температуры по массе обжигаемого материала;
3) трудность регулирования температурного и кислородного режимов.
Эти недостатки подового обжига послужили толчком к разработке значительно более прогрессивного способа обжига — обжига в кипящем слое. В настоящее время обжиг в кипящем слое применяют на золотоизвлекательных предприятиях Канады, США и других стран. На рис. приведена схема установки для обжига в кипящем слое флотационного концентрата на руднике Диккенсон Майнз (Канада). Печь кипящего слоя представляет собой вертикальный стальной цилиндр диаметром 2,5 м и высотой 5,5 м, футерованный огнеупорным кирпичом. Подина f печи площадью 3,14 м2 изготовлена из огнеупорного бетона. В подине расположено 116 сопел, через которые подается воздух от турбокомпрессора. Концентрат непрерывно поступает в печь и виде пульпы с помощью насоса. Попадая в печь, частицы концентрата приводятся в непрерывное движение восходящими по-
токами воздуха. Высота кипящего слоя составляет примерно 1,2 м. Температура в печи 700" С. Огарок разгружается непрерывно через специальную разгрузочную трубу, расположенную на уровне кипящего слоя на стороне, противоположной загрузке. По выходе из печи огарок попадает в ванну с водой, где охлаждается. Обжиговые газы очищают от пыли в трех последовательно расположенных циклонах, после чего через дымовую трубу выбрасывают в атмосферу. Пыль из циклонов разгружается в ванны, наполненные водой. Пульпу, состоящую из огарка и пыли, сгущают и направляют на планирование.