Смекни!
smekni.com

Переработка золотосодержащего сырья (стр. 8 из 9)

3. Цементация алюминием. Используется алюминиевая пыль с крупностью частиц 95% класса -0,074 мм. Осаждение проходит по реакции:

3[Au(TM)2]2SO4+2Al=6Au+12TM+Al2(SO4)3.
Расход алюминия составляет 3 г на 1 г золота, продолжительность контакта 4 ч при температуре 20 °С. Содержание золота в осадке составляет до 25%, остаточное содержание золота в растворе 2—5 мг/л. Осадок обрабатывают 5%-ным раствором NaOH в течение 3 ч для удаления алюминия, после чего содержание золота в осадке повышается до 85%. Этот осадок плавят для получения чернового золота. Недостатки метода те же, что и при осаждении цинком.

4. Щелочное осаждение золота. По этому методу элюат предварительно в течение 4—6 ч продувают воздухом для удаления HCN во избежание образования NaCN при введении щелочи, растворения и неполного осаждения золота. В раствор при температуре 40-50 °С добавляется 40%-ный раствор NaOH до рН 10-12. При этом осаждается гидроксид золота по реакции:

Au[SC(NH2)2]2Cl+NaOH=Au(OH)+2SC(NH2)2+NaCl.

Продолжительность осаждения составляет 2-4 ч. Имеет большое значение поддержание указанного значения рН раствора, так как при недостатке щелочи возможно неполное осаждение золота, а при избытке ее — растворение гидрата золота. Вместе с золотом осаждаются гидроксиды металлов-примесей, благодаря чему раствор освобождается от примесей, затрудняющих процесс регенерации смолы. Гидратные осадки с содержанием золота 10—15% отфильтровывают на фильтр-прессе, промывают горячей водой, продувают воздухом и обжигают при температуре 300 °С для удаления серы. Огарки затем подвергают сернокислотной обработке для растворения примесей и при содержании золота 30—45% они поступают на аффинаж. Недостатками метода являются: плохая фильтруемость гидратных осадков, дополнительный расход кислоты и сравнительно невысокое качество осадков.

5. Осаждение золота активированным углем. Извлечение золота и серебра из кислых тиокарбамидных растворов с относительно невысокой концентрацией благородных металлов (Au до 50мг/л) может быть осуществлено методом сорбциинаактивированных углях (СКТ, ОУ, КАД и др.).

О возможностях данного технологического приема можно судить по ре­зультатам сорбции золота порошкообразным активированным углем марки СКТ из растворов от выщелачивания флотоконцентратаАртемовской ЗИФ. содержащих, кроме золота, некоторое количество меди (до 0.2 г/л), железа (до 1,2 г/л) и других компонентов-примесей. В зависимости от исходной концент­рации золота в растворах (1-20 мг/л), рабочая емкость угля по золоту состави­ла 2-12 %, при содержании примесей (%): железа 0.12, меди до 2,7; кальция. магния, алюминия, цинка, никеля - в пределах от 0,01-0,1. После озоления уголь содержал Au 40-50; Fе 5-10: Сu 10-15; SiO2 5-8 %, представляя, таким образом. достаточно концентрированный по золоту продукт, пригодный для отправки на аффинажные заводы.

Получены результаты исследовании по изучению меха­низма адсорбции золота из кислых тиокарбамидных растворов акти­вированным углем. Установлено, что сорбция подчиняется уравнениям Фрейндлиха и Лэнгмюра и является эндотермическим процессом. Энер­гия активации, составляющая 3,5 ккал/моль, свидетельствует о том, что

лимитирующей стадией в кинетике адсорбции является диффузия в пористой структуре активированного угля.

Предложен сорбционно-флотационный вариант извлечения золота из нефильтрованных тиокарбамидных пульп активированным углем. Но данному варианту пульпа обрабатывается порошкообразным углем (50-60 % частиц с диаметром менее 40 мкм), после чего подверга­ется флотации. В качестве флотационного реагента используется олеат натрия. Продолжительность 5 мин. За этот период из пульпы (рН=1,5), содержащей 20 мг/л золота, 400 мг/л тиокарбамида, 0,5 г/л угольного порошка, при расходе олеата натрия 100-120 мг/л, достигается извлече­ние золота в концентрат на уровне 90 %. Увеличение расхода олеата до 200 мг/л повышает извлечение золота до 95 %.

Лучшие результаты при опробовании различных марок углей получены при извлечении золота углем СКТ. Сорбция золота углем достаточно избирательна, большая часть примесей остается в растворе. В противоточном процессе за 4-5 ступеней золото полностью извлекается из растворов и получаются угольные осадки с содержанием золота 15—20%. Их необходимо сжигать и золу плавить на черновой металл. Недостатки способа: затруднительность процесса сжигания угля и большие потери ТМ (10—15%), которая полностью теряется при переработке угольного осадка.

6. Экстракция золота. Исследования ученых показали принципиальную возможность извлечения золота из солянокислых ТМ растворов экстракцией трибутилфосфатом. При контакте органической и водной фаз в течение 5—10 мин и отношении объемов фаз О : В = 2 : 1 достигается практически полное извлечение золота из водного раствора. Необходимы дальнейшие исследования по экстракции из сернокислых элюатов, реэкстракции и переработке реэкстрактов.

7. Электролитическое осаждение золота и серебра. Это наиболее эффективный метод переработки кислых ТМ элюатов, так как позволяет получить металлическое золото высокой чистоты без затрат реагентов и проведения дополнительных операций. В качестве анодов при электролитическом осаждении золота и серебра используют графитовые или платиновые пластины, в качестве катодов - титановые пластины или графитированный ватин.

Таким образом, при электролизе золота имеет место следующая электрохимическая система:Au с примесями (катод) | [Au(ТМ)2]2SO4,ТМ,H2SO4,H2O примеси | Ti (анод)

На катоде протекают следующие основные реакции восстановления:

Au[SC(NH2)2]2++e=Au+2SC(NH2)2

2H++2e=H2

Возможно также восстановление меди, свинца и других примесей. На аноде имеет место электролитическая реакция образования ионов Н+:

2H2O-4e=O2+4H+

Кроме того, на аноде возможны процессы окисления и разложения ТМ с выделением серы по реакции:

SC(NH2)2-2e=CNNH2+S+2H+

С течением времени цианамид присоединяет воду и переходит в мочевину.

CNNH2+H2O=CO(NH2)2

Суммарный процесс анодного окисления ТМ проходит по реакции

SC(NH2)2+ H2O -2е= CO(NH2)2+S+2H+

Окисление ТМ особенно усиливается при повышении плотности тока > 15 А/м2. Анодное разложение ТМ увеличивает расход этого дорогостоящего реагента, а продукты разложения его оказывают вредное влияние на электролитическое выделение металлов из раствора и качество осадка. Во избежание этого целесообразно проводить процесс электролиза с разделением анодного и катодного пространств диафрагмой с ионитовой мембраной, т.е. с разделением электролизной ванны на анодные и катодные камеры. Золотосодержащий ТМ раствор помещается в катодное пространство, анолитом служит 0,5-1,0%-ный раствор H2SO4 В качестве диафрагм используются анионитовые или катионитовые мембраны, через которые молекулы ТМ не проходят в анолит. Комплексные ТМ катионы переходят в анолит в малом количестве: 3-4%. При наличии диафрагм расход ТМ при электролизе резко сокращается. Процесс электролиза проводится при катодной плотности тока Jк = 8...10 А/м2, напряжении на ванне 3,0 В, температуре электролита 50-60 °С, значении потенциала 0,3-0,4 В относительно нормального хлор-серебряного электрода. Основная масса золота осаждается за 2—3 ч электролиза. После концентрации 100—120 мг/л для получения остаточного содержания золота в растворе 10—20 мг/л продолжительность осаждения увеличивается до 6-12 ч. Содержание золота в катодном осадке составляет 70-85%, серебра 10-25%, меди 0,5-5%, цинка 0,1-0,2%, железа 0,1-0,4%. Основная масса примесей неблагородных металлов остается в электролите и возвращается в процесс десорбции золота. Выход по току по золоту и серебру составляет около 30%. Увеличение плотности тока более 15-20 А/м2 нецелесообразно, так как при этом увеличивается осаждение примесей, в частности меди, уменьшается выход по току, увеличивается унос электролита с пузырьками выделяющегося водорода, изменяется структура осадка. [2]

8. Электроэлюирование. Метод электроэлюирования, или электродесорбции представляет собой совмещенный процесс десорбции золота и электроосаждения его из раствора. Исследовано электроэлюирование золота с применением десорбции раствора NH4SCN. С этой целью 1,5 л насыщенного ани-онита Деацидит Н с 24% сильноосновных групп после предварительного элюирования с него никеля и меди раствором NaCN перемешивали в электролизной ванне с 10 л 5 н. (380,65 г/л) раствора NH4SCN (6,67 объема раствора на 1 объем смолы). В качестве анода использовалась угольная пластина, в качестве катода — свинцовая фольга. Катодная плотность тока составляла 154 А/м2, напряжение 1,5 В. Золото со смолы извлекается практически полностью за 24 ч (до содержания 0,066 г/л) и достаточно полно осаждается на свинцовом катоде (до содержания в растворе 15 мг/л). При напряжении на электродах 1,5-1,6 В роданистый аммоний не разрушается и может быть использован для электроэлюирования многократно. Разрушение NH4SCN происходило при наряжении на электродах 1,8—1,86 В. В случае

неселективного электроэлюирования 5 н. раствором NH4SCN при катодной плотности тока 300 А/м2 и напряжении на электродах 1,6 В золото и медь вымывались из смолы и осаждались на катоде почти на 100%, никель практически не элюировался, но некоторое его количество (до 9%) осаждалось на катоде. Продолжительность процесса 60 ч. Преимущество метода — малый объем элюирующего раствора и ускорение процесса десорбции, но недостатки, свойственные роданистым элюатам, сохраняются. Метод электроэлюирования с применением слабокислых ТМ растворов разработан М.С.Гирдасовым. Схема установки для электроэлюирования показана на рис.