Смекни!
smekni.com

Переработка золотосодержащего сырья (стр. 1 из 9)

ВВЕДЕНИЕ.

1. ОБЩАЯ ЧАСТЬ

1.1 ХАРАКТЕРИСТИКА ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ И МЕТОДЫ ЕГО ПЕРЕРАБОТКИ

1.2 ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПЕРЕРАБОТКИ СЫРЬЯ

КРАТКОЕ ОПИСАНИЕ ОСНОВНЫХ ЭТАПОВ ПЕРЕРАБОТКИ СЫРЬЯ

-ПОДГОТОВКА РУД К ИЗВЛЕЧЕНИЮ ЗОЛОТА И СЕРЕБРА

-ДРОБЛЕНИЕ И ИЗМЕЛЬЧЕНИЕ ЗОЛОТОСОДЕРЖАЩИХ РУД

-ГРАВИТАЦИОННЫЕ МЕТОДЫ ОБОГАЩЕНИЯ КОРЕННЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД

-ИЗВЛЕЧЕНИЕ ЗОЛОТА АМАЛЬГАМАЦИЕЙ

-СГУЩЕНИЕ

-ЦИАНИРОВАНИЕ ЗОЛОТОСОДЕРЖАЩИХ РУД

-СОРБЦИЯ ИЗ ПУЛЬП (СОРБЦИОННОЕ ВЫЩЕЛАЧИВАНИЕ)

-ЭЛЮИРОВАНИЕ ЗОЛОТА И СЕРЕБРА И РЕГЕНЕРАЦИЯ НАСЫЩЕННЫХ АНИОНИТОВ

1.3 РОЛЬ ПРОЦЕССА ВЫДЕЛЕНИЯ ЗОЛОТА ИЗ ТИОМОЧЕВИНННЫХ ЭЛЮАТОВ В ТЕХНОЛОГИЧЕСКОЙ СХЕМЕ

2.ОБЗОР ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВЫДЕЛЕНИЯ ЗОЛОТА ИЗ ТИОМОЧЕВИННЫХ ЭЛЮАТОВ

2.1 ХАРАКТЕРИСТИКА И ХИМИЗМ ПРОЦЕССА

ОСАЖДЕНИЕ ЗОЛОТА ИЗ ТИОМОЧЕВИННЫХ РАСТВОРОВ

3.МЕТАЛЛУРГИЧЕСКИЕ РАСЧЕТЫ

ВВЕДЕНИЕ.

Золото – металл желтого цвета. Имеет гранецентрированную кубическую решетку, отличается исключительной ковкостью и тягучестью. Из золота можно вытянуть проволоку диаметром в 0,001 мм. Тепло- и электропроводность металла весьма высоки: золото уступает лишь меди и серебру.

Физико-химические свойства золота:

-Au находится в 1-ой группе,

-атомная масса 197,

-плотность при 20°С 19,32 г/см3,

-характерные степени окисления +1 и +3,

-нормальные электродные потенциалы +1,88 и +1,5 В,

-температура плавления 1064,4 °С,

-температура кипения 2877°С,

-теплоемкость при 25°С 25,5 Дж/(моль К),

-теплота испарения 368 кДж/моль.

Отличительной особенностью золота является склонность к комплексообразованию и легкость к восстановлению большинства его соединений до металла.

Золото – благородный металл. Низкая химическая активность является важным и характерным свойством этого металла. На воздухе, даже в присутсвии влаги золото практически не изменяется. Даже при высоких температурах золото не взаимодействует с водородом, кислородом, азотом, серой и углеродом.

Золото соединяется с галогенами, причем с бромом процесс идет уже при комнатной температуре, а с фтором, хлором и йодом – при нагревании.

Электродный потенциал золота в водных растворах весьма высок:

Au®Au++

, jо= +1,68 В;

Au®Au+3+3

, jо= +1,58 В;

Поэтому золото не растворяется ни в щелочах, ни в таких кислотах, как серная, азотная, соляная, плавиковая, а также органических.

Вместе с тем, в присутствие сильных окислителей золото способно растворяться в некоторых минеральных кислотах. Так оно растворяется в концентрированной серной кислоте в присутствии йодной кислоты H5IO6, азотной кислоты, диоксида марганца, а также в горячей безводной селеновой кислоте H2SeO4, являющейся весьма сильным окислителем.

Золото легко растворяется в царской водке насыщенной хлором соляной кислоте в водных растворах щелочных и щелочноземельных металлов в присутствие кислорода. Хорошим растворителем золота является водный раствор тиомочевины, содержащий в качестве окислителя хлорид или сульфат железа (+3).

Из других растворителей золото можно отметить хлорную и бромную воду, раствор йода в йодистом калии или в йодистоводородной кислоте. Во всех случаях растворение золота связано с образованием комплексных соединений.

В своих химических соединениях золото может иметь степень окисления +1 и +3. Все соединения золота относительно непрочны и легко восстанавливаются до металла даже простым прокаливанием.

Цель курсовой работы сделать обзор технологий извлечения золота из растворов тиомочевинных элюатов, показать достоинства и недостатки каждой из них, а также подробно рассмотреть технологию электролитического осаждения золота из тиомочевинных элюатов.

1.ОБЩАЯ ЧАСТЬ

1.1 ХАРАКТЕРИСТИКА ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ И МЕТОДЫ ЕГО ПЕРЕРАБОТКИ

В течение последних двух-трех десятилетий неуклонно умень­шается доля золота, извлекаемого из простых в технологическом отношении золотых руд. Одновременно возра­стает доля золота, извлекаемого из таких руд, эффективная обработка которых требует значительно более сложных и развитых схем, включающих операции гравитационного обогащения, флота­ции, обжига, плавки, выщелачивания и т. д. Золотосодержащие руды и концентраты, обработка которых в обычных условиях цианистого процесса (в сочетании с гравитационными и амальгамационными методами извлечения крупного золота) не обеспе­чивает достаточно высокого извлечения золота или сопровождается повышенными затратами на отдельные технологические операции (измельчение, цианирование, обезвоживание, осаждение золота из растворов и т. д.), называют упорными.

РУДЫ С ТОНКОВКРАПЛЕННЫМ ЗОЛОТОМИ МЕТОДЫ ИХ ПЕРЕРАБОТКИ

Тонкая вкрапленность золота в породообразующие минералы — наиболее распространенная причина упорности золотых руд.

Руды этого типа делятся на две основные категории: руды, в которых золото ассоциировано с кварцем; руды, в которых золото ассоциировано с сульфидами.

Для извлечения золота из руд первой категории применяют тонкое или сверхтонкое измельчение, обеспечивающее достаточ­ное вскрытие золота. С этой целью используют схемы с трехстадиальным измельчением и предварительной классификацией материала перед II и III стадиями обработки. Измельчение руды по такой схеме обеспечивает получение продукта крупностью 90— 95% класса — 0,04 мм.

Цианирование такого тонкоизмельченного материала позволяет, как правило, получать отвальные хвосты с невысоким содер­жанием золота. Однако вследствие высокой стоимости тонкого измельчения обработка руд с тонковкрапленным золотом обходится значительно дороже по сравнению с обработкой обычных руд. Кроме того, из-за повышенного содержания в цианистой пульпе вторичных илов, образующихся при тонком измельчении, заметноснижается производительность цикла сгущения и фильтрации, что дополнительно увеличивает стоимость извлечения золота из таких руд. В результате этого при переработке руд с тонковкрапленным золотом удельные затраты на измельчение и обезвоживание могут достигать 60% общей стоимости обработки руды, тогда как при переработке обычных руд они не превосходят 30—40%. С целью сокращения стоимости измельчения в послед­ние годы ведутся большие работы по внедрению прогрессивного метода бесшарового измельчения (самоизмельчения) золотых руд.[1]

Руды второй категории содержат золото в виде тонкой и эмульсионной вкрапленности в сульфидах, главным образом в пирите и арсенопирите. Наиболее распространенным методом извлечения золота из таких руд является флотационный, который позволяет извлечь в концентрат золотосодержащие сульфиды и свободное золото. Далее концентрат с целью извлечения из него золота можно перерабатывать различными методами.

Если крупность золотин не чрезмерно мала и позволяет вскрыть золото тонким измельчением, флотационный концентрат доизмельчают и цианируют.

Применение флотации в этом случае дает возможность устра­нить дорогую операцию тонкого измельчения всей массы исходной руды и ограничиться доизмельчением относительно небольшого количества флотационного концентрата, выход которого состав­ляет обычно 2—5% от массы исходной руды.

Часто, однако, вкрапленность золота в сульфидах настолько мелка, что тонкое и даже сверхтонкое измельчение материала не позволяет добиться необходимой степени вскрытия. В этом слу­чае тонкодисперсное золото вскрывают с помощью окислитель­ного обжига. При окислительном обжиге флотационных концен­тратов сульфиды окисляются и превращаются в пористую хорошо проницаемую для цианистых растворов массу окислов. После­дующее выщелачивание огарка позволяет перевести золото в циа­нистый раствор.

Окисление пирита начинается при температуре 450—500° С. Процесс протекает с образованием в качестве промежуточного продукта пирротина FeS2 + О2 = FeS + SO2, который окис­ляется до магнетита 3FeS + 5O2 = Fе3O4 + 3SO2 и далее до гематита 2Fе3О4 + ЅО2= ЗFе2О3.

При температурах выше 600 °С окислению пирита предше­ствует его диссоциация с образованием пирротина 2FeS2= 2FeS + S2, который затем окисляется также до гематита.

Показатели окислительного обжига зависят от целого ряда параметров, из которых наиболее важна температура. При не­достаточно высокой температуре обжига (ниже 500° С) скорость окислительных реакций невелика, и в огарке может присутствовать заметное количество не полностью окисленных частиц пирита. Цианирование такого огарка будет сопровождаться значитель­ными потерями золота вследствие его недостаточно полного вскры­тия. С повышением температуры обжига окисление пирита про­текает быстрее и полнее. Однако при температурах, превыша­ющих 900—950° С, возможно частичное оплавление огарка вслед­ствие образования относительно легкоплавких эвтектических смесей, состоящих из пирротина и магнетита. Появление расплава ведет к спеканию материала и получению плотных малопористых огарков, плохо поддающихся цианированию.

Существенно на показатели обжига влияет концентрация кислорода в газовой фазе. При низкой концентрации кислорода скорость окисления пирита снижается, что может привести к не­достаточно полному вскрытию золота. В то же время при чрез­мерно высокой концентрации кислорода скорость процесса может стать настолько высокой, что при недостаточно хороших условиях теплообмена тепло экзотермических реакций не будет успевать рассеиваться в окружающей среде и температура обжигаемых зерен превысит опасный предел (900—950° С). В результате этого огарок оплавляется и структура его будет недостаточно пористой. Практически установлено, что оптимальная температура обжига пиритных концентратов зависит от их вещественного состава и колеблется в пределах 500—700° С. Расчеты и эксперименталь­ные исследования показывают, что вследствие «перегрева» огарка температура его может превышать температуру в печи на 300— 400 град. Взаимосвязь между скоростью окисления пирита и температурой его зерен указывает на то, что для получения пори­стого огарка скорость окислительных реакций необходимо ре­гулировать таким образом, чтобы температура частиц при обжиге не превышала 900—950° С. Чтобы достигнуть этого, надо умень­шить количество воздуха, подаваемого в печь, или снизить концентрацию кислорода в газовой фазе. Вместе с тем уменьшить «перегрев» обжигаемых частиц можно путем улучшения условий теплообмена между материалом и окружающей средой. Этот путь более рационален, так как позволяет поддерживать оптимальную температуру материала в печи без соответствующего уменьшения скорости обжига. Условия теплообмена между обжигаемым кон­центратом и окружающей средой улучшаются при интенсивном перемешивании материала в печи. Поэтому осуществление про­цесса обжига на поду в условиях относительно слабого перемеши­вания материала создает значительную опасность «перегрева» огарка и его частичного оплавления. Проведение же процесса в печах кипящего слоя, где вследствие интенсивного перемеши­вания условия теплообмена исключительно благоприятны, поз­воляет значительно точнее выдерживать температурный режим обжига, не допуская оплавления огарка.