ВВЕДЕНИЕ.
1.1 ХАРАКТЕРИСТИКА ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ И МЕТОДЫ ЕГО ПЕРЕРАБОТКИ
1.2 ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПЕРЕРАБОТКИ СЫРЬЯ
КРАТКОЕ ОПИСАНИЕ ОСНОВНЫХ ЭТАПОВ ПЕРЕРАБОТКИ СЫРЬЯ
-ПОДГОТОВКА РУД К ИЗВЛЕЧЕНИЮ ЗОЛОТА И СЕРЕБРА
-ДРОБЛЕНИЕ И ИЗМЕЛЬЧЕНИЕ ЗОЛОТОСОДЕРЖАЩИХ РУД
-ГРАВИТАЦИОННЫЕ МЕТОДЫ ОБОГАЩЕНИЯ КОРЕННЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД
-ИЗВЛЕЧЕНИЕ ЗОЛОТА АМАЛЬГАМАЦИЕЙ
-СГУЩЕНИЕ
-ЦИАНИРОВАНИЕ ЗОЛОТОСОДЕРЖАЩИХ РУД
-СОРБЦИЯ ИЗ ПУЛЬП (СОРБЦИОННОЕ ВЫЩЕЛАЧИВАНИЕ)
-ЭЛЮИРОВАНИЕ ЗОЛОТА И СЕРЕБРА И РЕГЕНЕРАЦИЯ НАСЫЩЕННЫХ АНИОНИТОВ
1.3 РОЛЬ ПРОЦЕССА ВЫДЕЛЕНИЯ ЗОЛОТА ИЗ ТИОМОЧЕВИНННЫХ ЭЛЮАТОВ В ТЕХНОЛОГИЧЕСКОЙ СХЕМЕ
2.ОБЗОР ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВЫДЕЛЕНИЯ ЗОЛОТА ИЗ ТИОМОЧЕВИННЫХ ЭЛЮАТОВ
2.1 ХАРАКТЕРИСТИКА И ХИМИЗМ ПРОЦЕССА
ОСАЖДЕНИЕ ЗОЛОТА ИЗ ТИОМОЧЕВИННЫХ РАСТВОРОВ
3.МЕТАЛЛУРГИЧЕСКИЕ РАСЧЕТЫ
ВВЕДЕНИЕ.
Золото – металл желтого цвета. Имеет гранецентрированную кубическую решетку, отличается исключительной ковкостью и тягучестью. Из золота можно вытянуть проволоку диаметром в 0,001 мм. Тепло- и электропроводность металла весьма высоки: золото уступает лишь меди и серебру.
Физико-химические свойства золота:
-Au находится в 1-ой группе,
-атомная масса 197,
-плотность при 20°С 19,32 г/см3,
-характерные степени окисления +1 и +3,
-нормальные электродные потенциалы +1,88 и +1,5 В,
-температура плавления 1064,4 °С,
-температура кипения 2877°С,
-теплоемкость при 25°С 25,5 Дж/(моль К),
-теплота испарения 368 кДж/моль.
Отличительной особенностью золота является склонность к комплексообразованию и легкость к восстановлению большинства его соединений до металла.
Золото – благородный металл. Низкая химическая активность является важным и характерным свойством этого металла. На воздухе, даже в присутсвии влаги золото практически не изменяется. Даже при высоких температурах золото не взаимодействует с водородом, кислородом, азотом, серой и углеродом.
Золото соединяется с галогенами, причем с бромом процесс идет уже при комнатной температуре, а с фтором, хлором и йодом – при нагревании.
Электродный потенциал золота в водных растворах весьма высок:
Au®Au++
, jо= +1,68 В;Au®Au+3+3
, jо= +1,58 В;Поэтому золото не растворяется ни в щелочах, ни в таких кислотах, как серная, азотная, соляная, плавиковая, а также органических.
Вместе с тем, в присутствие сильных окислителей золото способно растворяться в некоторых минеральных кислотах. Так оно растворяется в концентрированной серной кислоте в присутствии йодной кислоты H5IO6, азотной кислоты, диоксида марганца, а также в горячей безводной селеновой кислоте H2SeO4, являющейся весьма сильным окислителем.
Золото легко растворяется в царской водке насыщенной хлором соляной кислоте в водных растворах щелочных и щелочноземельных металлов в присутствие кислорода. Хорошим растворителем золота является водный раствор тиомочевины, содержащий в качестве окислителя хлорид или сульфат железа (+3).
Из других растворителей золото можно отметить хлорную и бромную воду, раствор йода в йодистом калии или в йодистоводородной кислоте. Во всех случаях растворение золота связано с образованием комплексных соединений.
В своих химических соединениях золото может иметь степень окисления +1 и +3. Все соединения золота относительно непрочны и легко восстанавливаются до металла даже простым прокаливанием.
Цель курсовой работы сделать обзор технологий извлечения золота из растворов тиомочевинных элюатов, показать достоинства и недостатки каждой из них, а также подробно рассмотреть технологию электролитического осаждения золота из тиомочевинных элюатов.
1.1 ХАРАКТЕРИСТИКА ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ И МЕТОДЫ ЕГО ПЕРЕРАБОТКИ
В течение последних двух-трех десятилетий неуклонно уменьшается доля золота, извлекаемого из простых в технологическом отношении золотых руд. Одновременно возрастает доля золота, извлекаемого из таких руд, эффективная обработка которых требует значительно более сложных и развитых схем, включающих операции гравитационного обогащения, флотации, обжига, плавки, выщелачивания и т. д. Золотосодержащие руды и концентраты, обработка которых в обычных условиях цианистого процесса (в сочетании с гравитационными и амальгамационными методами извлечения крупного золота) не обеспечивает достаточно высокого извлечения золота или сопровождается повышенными затратами на отдельные технологические операции (измельчение, цианирование, обезвоживание, осаждение золота из растворов и т. д.), называют упорными.
РУДЫ С ТОНКОВКРАПЛЕННЫМ ЗОЛОТОМИ МЕТОДЫ ИХ ПЕРЕРАБОТКИ
Тонкая вкрапленность золота в породообразующие минералы — наиболее распространенная причина упорности золотых руд.
Руды этого типа делятся на две основные категории: руды, в которых золото ассоциировано с кварцем; руды, в которых золото ассоциировано с сульфидами.
Для извлечения золота из руд первой категории применяют тонкое или сверхтонкое измельчение, обеспечивающее достаточное вскрытие золота. С этой целью используют схемы с трехстадиальным измельчением и предварительной классификацией материала перед II и III стадиями обработки. Измельчение руды по такой схеме обеспечивает получение продукта крупностью 90— 95% класса — 0,04 мм.
Цианирование такого тонкоизмельченного материала позволяет, как правило, получать отвальные хвосты с невысоким содержанием золота. Однако вследствие высокой стоимости тонкого измельчения обработка руд с тонковкрапленным золотом обходится значительно дороже по сравнению с обработкой обычных руд. Кроме того, из-за повышенного содержания в цианистой пульпе вторичных илов, образующихся при тонком измельчении, заметноснижается производительность цикла сгущения и фильтрации, что дополнительно увеличивает стоимость извлечения золота из таких руд. В результате этого при переработке руд с тонковкрапленным золотом удельные затраты на измельчение и обезвоживание могут достигать 60% общей стоимости обработки руды, тогда как при переработке обычных руд они не превосходят 30—40%. С целью сокращения стоимости измельчения в последние годы ведутся большие работы по внедрению прогрессивного метода бесшарового измельчения (самоизмельчения) золотых руд.[1]
Руды второй категории содержат золото в виде тонкой и эмульсионной вкрапленности в сульфидах, главным образом в пирите и арсенопирите. Наиболее распространенным методом извлечения золота из таких руд является флотационный, который позволяет извлечь в концентрат золотосодержащие сульфиды и свободное золото. Далее концентрат с целью извлечения из него золота можно перерабатывать различными методами.
Если крупность золотин не чрезмерно мала и позволяет вскрыть золото тонким измельчением, флотационный концентрат доизмельчают и цианируют.
Применение флотации в этом случае дает возможность устранить дорогую операцию тонкого измельчения всей массы исходной руды и ограничиться доизмельчением относительно небольшого количества флотационного концентрата, выход которого составляет обычно 2—5% от массы исходной руды.
Часто, однако, вкрапленность золота в сульфидах настолько мелка, что тонкое и даже сверхтонкое измельчение материала не позволяет добиться необходимой степени вскрытия. В этом случае тонкодисперсное золото вскрывают с помощью окислительного обжига. При окислительном обжиге флотационных концентратов сульфиды окисляются и превращаются в пористую хорошо проницаемую для цианистых растворов массу окислов. Последующее выщелачивание огарка позволяет перевести золото в цианистый раствор.
Окисление пирита начинается при температуре 450—500° С. Процесс протекает с образованием в качестве промежуточного продукта пирротина FeS2 + О2 = FeS + SO2, который окисляется до магнетита 3FeS + 5O2 = Fе3O4 + 3SO2 и далее до гематита 2Fе3О4 + ЅО2= ЗFе2О3.
При температурах выше 600 °С окислению пирита предшествует его диссоциация с образованием пирротина 2FeS2= 2FeS + S2, который затем окисляется также до гематита.
Показатели окислительного обжига зависят от целого ряда параметров, из которых наиболее важна температура. При недостаточно высокой температуре обжига (ниже 500° С) скорость окислительных реакций невелика, и в огарке может присутствовать заметное количество не полностью окисленных частиц пирита. Цианирование такого огарка будет сопровождаться значительными потерями золота вследствие его недостаточно полного вскрытия. С повышением температуры обжига окисление пирита протекает быстрее и полнее. Однако при температурах, превышающих 900—950° С, возможно частичное оплавление огарка вследствие образования относительно легкоплавких эвтектических смесей, состоящих из пирротина и магнетита. Появление расплава ведет к спеканию материала и получению плотных малопористых огарков, плохо поддающихся цианированию.
Существенно на показатели обжига влияет концентрация кислорода в газовой фазе. При низкой концентрации кислорода скорость окисления пирита снижается, что может привести к недостаточно полному вскрытию золота. В то же время при чрезмерно высокой концентрации кислорода скорость процесса может стать настолько высокой, что при недостаточно хороших условиях теплообмена тепло экзотермических реакций не будет успевать рассеиваться в окружающей среде и температура обжигаемых зерен превысит опасный предел (900—950° С). В результате этого огарок оплавляется и структура его будет недостаточно пористой. Практически установлено, что оптимальная температура обжига пиритных концентратов зависит от их вещественного состава и колеблется в пределах 500—700° С. Расчеты и экспериментальные исследования показывают, что вследствие «перегрева» огарка температура его может превышать температуру в печи на 300— 400 град. Взаимосвязь между скоростью окисления пирита и температурой его зерен указывает на то, что для получения пористого огарка скорость окислительных реакций необходимо регулировать таким образом, чтобы температура частиц при обжиге не превышала 900—950° С. Чтобы достигнуть этого, надо уменьшить количество воздуха, подаваемого в печь, или снизить концентрацию кислорода в газовой фазе. Вместе с тем уменьшить «перегрев» обжигаемых частиц можно путем улучшения условий теплообмена между материалом и окружающей средой. Этот путь более рационален, так как позволяет поддерживать оптимальную температуру материала в печи без соответствующего уменьшения скорости обжига. Условия теплообмена между обжигаемым концентратом и окружающей средой улучшаются при интенсивном перемешивании материала в печи. Поэтому осуществление процесса обжига на поду в условиях относительно слабого перемешивания материала создает значительную опасность «перегрева» огарка и его частичного оплавления. Проведение же процесса в печах кипящего слоя, где вследствие интенсивного перемешивания условия теплообмена исключительно благоприятны, позволяет значительно точнее выдерживать температурный режим обжига, не допуская оплавления огарка.