Следует δ выразить в см, τ- в секундах.
Решение:
Из данного выражения второго закона Фика в конечных приращениях получаем:
D2=
Из сравнения задач 21 и 23 следует, что при нахождении коэффициента диффузии с использованием второго закона Фика получаемое значение D не зависит от того, по какой модели переходного слоя рассчитывают величину ΔС, т.е величина ΔС в этом случае не имеет большого значения.
Ответ:D2=8,97∙10-15 см2/с
24. Используя приведённые кинетические данные зависимости степени превращения xсв ненаполненного эпоксидного связующего и степени превращения такого же связующего в смеси с волокнистым наполнителем (нить лавсан) от продолжительности отверждения τ, найти скорость U=
взаимодействия между наполнителем и связующим. Графическим интегрированием зависимости U(τ) найти массовые доли γ связующего,образовавшего переходные слои γ= :τ,мин | x,масс.доли | xсв,масс.доли | Δx=x-xсв | (U,с-1)∙∙105 | γ | χ= |
30 | 0,51 | 0,30 | ||||
60 | 0,72 | 0,47 | ||||
90 | 0,80 | 0,64 | ||||
120 | 0,86 | 0,70 | ||||
150 | 0,90 | 0,75 | ||||
180 | 0,93 | 0,80 | ||||
210 | 0,94 | 0,84 | ||||
240 | 0,94 | 0,86 |
Вычислить также параметр влияния χ и указать, чему равна скорость диффузии олигомерных молекул связующего к поверхности элементов наполнителя, если отверждение протекает в диффузионной области.
Решение:
Для вычисления и U продолжительность отверждения τ следует выразить в секундах. Величины Δx и U проходят через максимум, поэтому график U(τ) имеет экстремальную форму. Для графического интегрирования графика U(τ) необходимо:
1) определить количество массовых долей, приходящихся на 1 см2 площади графика – найти “цену” С одного квадратного сантиметра площади, ограниченной данным графиком;
2) выразить в квадратных сантиметрах площади Si полос, соответствующих шагу Δτ=30 мин. при изменении τ от 0 до 240 минут (рис.3);
3) величинаγ1=CS1, γ2=С(S1+S2), γ3=C(S1+S2+S3), ….. γ8=С=
Значения параметра влияния χ>1 не изменяют реального смысла и обусловлены погрешностью данного метода расчёта.
Сравнение результатов задач 24 и 16 показывает, что эпоксидное связующее образует более толстые (массивные) переходные слои, чем феноло-формальдегидное связующее (значения γmax составляют 0,63 и 0,14 соответственно). При этом в переходных слоях эпоксидного связующего выше роль химического взаимодействия между связующим и наполнителем (χmax составляет 0,96 и 0,70 соответственно).
Скорость диффузии олигомерных молекул связующего равны скорости U взаимодействия между связующим и наполнителем, если отверждение протекает в диффузионной области.
Ответ: γmax=0,63 χmax=0,96
25. Определить концентрации (массовые доли/см3) непрореагировавших олигомеров в объёме связующего С1 и в переходном слое С2, если степень превращения в объёме xсв=0,64; χ=0,35; γ=0,34. Общая масса связующнго m=12,96 г. Расчёт вести по модели 1 (то есть всё связующее, находящееся вблизи поверхности наполнителя, считать относящимся к переходному слою). Плотность связующего ρ=1,2 г/см3.
Найти движущую силу ΔС диффузии олигомерных молекул связующего в системе связующее-наполнитель. В какую сторону диффундируют олигомерные молекулы в данной задаче?
Решение:
Концентрацию С1 олигомеров в объёме связующего V можно оценить как массовую долю олигомеров в единице объёма: С~
.Аналогично концентрация в олигомеров в переходном слое С2~
,где степень превращения связующего в переходном слое y=xсв+χ=0,99.
Принимая плотности связующего в объёме и в переходном слое равными, можно вычислить объёмы:
V=
=7,128 см3;υ =
=3,672 см3Используя приведённые соотношения, получаем:
C1=
=0,05050 см-3С2=
0,000926 см-3;ΔC=C2-C1=-0,004957 см-3
Самодиффузия протекает в направлении от большей концентрации к меньшей, то есть из объёма к поверхности наполнителя, ускоряющего отверждение.
Ответ: С1=0,005050 см-3, С2=0,000926 см-3, ΔС=С2-С1=-0,04957 см-3
26. Определить концентрации (массовые доли/см3) непрореагировавших олигомеров в объёме связующего С1 и в переходном слое С2,если степень превращения в объёме xсв=0,64; χ=0,35; γ=0,34. Общая масса связующего m=12,96 г.Расчёт вести по модели 2 (то есть к переходному слою относить только отвержденные участки, находящиеся вблизи поверхности элементов наполнителя), при этом объём переходного слоя υ=myγ/ρ несколько сократится по сравнению с расчётом по модели 1 (y=xcв+χ – cтепень превращения олигомеров в переходном слое). Плотность связующего ρ=1,2 г/см3.
Найти движущую силу ΔС диффузии олигомерных молекул связующего в системе связующее-наполнитель.В какую сторону диффундируют олигомерные молекулы в данной задаче?
Решение:
По аналогии с задачей 25 концентрацию С1 олигомеров в объёме связующего V можно оценить как массовую долю олигомеров в единице объёма: C1~
, концентрацию С2 олигомеров в переходном слое объёмом υ : С2~ , где степень превращения связующего в переходном слое y=xсв+χ=0,99.Принимая плотности связующего в объёме и в переходном слое равными, можно вычислить объёмы, исключив из переходных слоев неотвержденные участки (в соответствии с моделью 2):
V=
=7,165 см3;υ=
=3,635 см3Используя вышеуказанные соотношения, получаем:
C1=
=0,0524 см-3С2=
=0,000935 см-3ΔС=0,000935-0,05024=-0,04931 см-3
Таким образом, различие между величинами ΔС, рассчитанными при использовании моделей 1 и 2, невелико (см. задачу 25), так как при y
1 различие между моделями 1 и 2 сглаживается.Ответ: С1=0,05024 см-3; С2=0,000935 см-3; ΔС=С2-С1=-0,04931 см-3.
27. Вычислить коэффициент диффузии D1 олигомерных молекул эпоксидного связующего к поверхности волокна лавсан в процессе отверждения, используя соотношение U=-D1S(ΔC/δ) (первый закон Фика), где U=3,00∙10-5 масс. доли/с- скорость диффузии олигомеров, численно равная скорости взаимодействия связующего и наполнителя в диффузионной области; ΔС=-0,04957 масс.доли/см3- движущая сила диффузии, рассчитанная по модели 1 переходного слоя; масса полимерного образца m=21,6 г.; содержание наполнителя Снап=40 масс.%, удельная поверхность волокнистого наполнителя Sуд=6 м2/г; толщина переходного слоя δ=2 мкм.
Решение:
Величину коэффициента диффузии D1 находим из данного выражения для первого закона Фика:
D1=-
, где S- поверхность диффузии, которую принимаем равной поверхности наполнителя:S=mCнапSуд=21,6 г ∙0,4∙6 м2/г=51,84∙104 см2.
Используя полученное значение S, имеем:
D1=
≈2,33∙10-13 см2/сОтвет: D1=2,33∙10-13 см2/с
28. Вычислить коэффициент диффузии D2 олигомерных молекул эпоксидного связующего к поверхности волокна – наполнителя лавсан в процессе отверждения, используя соотношение
(второй закон Фика), где движущая сила диффузии ΔС=-0,04957 масс. доли/см3 рассчитана по модели 1 переходного слоя, толщина переходного слоя (путь диффузии) δ=2 мкм; продолжительность отверждения Δτ=90 мин. при атмосферном давлении.Решение:
В соответствии с данным выражением второго закона Фика величина движущей силы ΔС не играет существенной роли при вычислении D2:
D2=
=7,40∙10-12 см2/с=74∙10-13 см2/сПолучено ,что D2 примерно в 30 раз больше, чем D1 (cм. Задачу 27):
=31,8Ответ: D2=7,40∙10-12 см2/с
29. Вычислить коэффициент диффузии D1 олигомерных молекул эпоксидного связующего к поверхности волокна лавсан в процессе отверждения, используя соотношение U=-D1S(ΔC/δ) (первый закон Фика), где U=3,00∙10-5 масс. доли/с – скорость диффузии олигомеров, численно равная скорости взаимодействия связующего и наполнителя в диффузионной области;ΔС=-0,04931 масс.доли/см3 – движущая сила диффузии, рассчитанная по модели 2 переходного слоя; масса полимерного образца m=21,6 г; содержание наполнителя Снап=40% масс., удельная поверхность волокнистого наполнителя Sуд=6 м2/ч; толщина переходного слоя δ=2 мкм.