Смекни!
smekni.com

Сборник задач и расчетно-графических работ по технологии переработки полимеров (стр. 5 из 7)

Решение:

Величину коэффициента диффузии D1 находим из данного в условии выражения для первого закона Фика:

D1=-

, где S – поверхность диффузии, которую принимаем равной поверхности наполнителя: S=m∙Cнап∙Sуд=21,6 г∙0,4∙6
=51,8∙104 м2 используя полученное значение S, имеем:

D1=

≈2,35∙10-13 см2

При использовании ΔС, рассчитанной по модели 1 переходного слоя, имели незначительное отличие величины D1 (cм. Задачу 27):

D1=2,33∙10-13 см2/с.

Ответ: D1=2,35∙10-13 см2/с.

30. Вычислить коэффициент диффузии D2 олигомерных молекул эпоксидного связующего к поверхности волокна – наполнителя лавсан в процессе отверждения, используя соотношение

(второй закон Фика), где движущая сила диффузии ΔС=-0,04931 масс.доли/см3 рассчитана по модели 2 переходного слоя, толщина переходного слоя (путь диффузии) δ=2 мкм; продолжительность отверждения при атмосферном давлении Δτ=90 мин.

Решение:

Из данного в условии задачи соотношения получаем: D2=

=7,34∙10-12 см2

Сравнение результатов расчетов коэффициентов диффузии в задачах 27-30 по моделям 1,2 переходных слоёв:

D11=2,33∙10-13 см2/с; D12=2,35∙10-13 см2

D21=7,40∙10-12 см2/с; D22=7,34∙10-12 см2

показывает,что использование различных моделей переходных слоёв обусловливает меньшее различие в величине коэффициентов диффузии, чем использование различных законов диффузии.

Решение:D2=7,34∙10-12 см2/с.

31. Определить среднюю толщину

прослойки эпоксидного связующего между волокнами, зная путь
диффундирующих молекул в момент времени τ1, когда разбавляющее и замедляющее влияние волокнистого наполнителя компенсировано физико-химическим взаимодействием между связующим и наполнителем:

Х 1 1- с наполнителем; 2 – без наполнителя;

2

τ

(x- cтепень превращения олигомерной термореактивной смолы в сетчатый продукт)

При расчёте исходить из того, что 2

=d, и использовать соотношение D=
, где D=6,0∙10-12 см2/с – коэффициент диффузии олигомерных молекул смолы,
=10-7 см/с – средняя линейная скорость диффундирующих олигомерных молекул в рассматриваемом направлении.

Решение:

Из данного в условии задачи соотношения D=

=
cледует:

=
=36∙10-5 см=3,6∙10-4 см=3,6 мкм

Ответ:

=3,6∙10-4 см=3,6 мкм

32. Вывести в общем виде выражение для движущей силы ΔС диффузии олигомерных молекул в системе связующее-наполнитель, используя модель 1 переходного слоя, через параметры y,γ,χ (y-cтепень превращения связующего в сетчатый продукт в переходном слое); γ-массовая доля связующего, образовавшего переходный слой; y=xсв+χ, где xсв- cтепень превращения связующего в объёме; χ-параметр влияния. При выводе исходить из того, что ΔС=С21 – движущая сила диффузии определяется разностью концентраций олигомеров в переходном слое С2 и в объёме С1.Концентрации определяются как отношение массовых долей олигомеров в переходном слое и в объёме связующего к соответствующим объёмам υ и V (γ(1-y)-количество олигомеров в переходном слое по модели 1).

Решение:

ΔС=С21=

Учитывая, что

=V, получаем:

ΔС=

Используя соотношение y=xсв+χ, окончательно имеем:

ΔC=

Ответ: ΔС=-

33. Вывести в общем виде выражение для движущей силы ΔС диффузии олигомерных молекул в системе связующее с массой и плотностью ρ – наполнитель, используя модель 2 переходного слоя, через параметры y,γ,χ (y-степень превращения связующего в сетчатый продукт в переходном слое; γ- массовая доля связующего, образовавшего переходный слой; y=xсв+χ, где xсв- степень превращения связующего в объёме; χ-параметр влияния. При выводе исходить из того, что ΔС=С21 – движущая сила диффузии определяется разностью концентраций олигомеров в переходном слое С2 и в объёме С1. Концентрация определяется как отношение массовых долей олигомеров в переходном слое и в объёме связующего к соответствующим объёмам υ и V (γ(1-yγ)- количество олигомеров в переходном слое по модели 2).Общий объём связующего V определяется его массой m и плотностью ρ: V=m/ρ.

Решение:

ΔС=С21=

Учитывая соотношение υ/γ=V, y=xсв+χ, получаем:

ΔC=

Ответ: ΔС=

=

34. Используя аддитивность тепловых эффектов отверждения ненаполненного эпоксидного связующего Q и взаимодействие Qдоп эпоксидного связующего с лавсаном, из которых складывается тепловой эффект суммарного процесса Qсумм=γQдоп+(1-γ)Q, найти величину Qдоп, если Qсумм=104 кДж/моль, Q=122 кДж/моль; массовая доля связующего, образовавшего переходный слой, γ=0,63.

Решение:

Выразив аддитивность тепловых эффектов отверждения ненаполненного эпоксидного связующего Q и взаимодействии Qдоп эпоксидного связующего с лавсаном, из которых складывается тепловой эффект суммарного процесса Qсумм=γQдоп+(1-γ)Q, найти величину Qдоп, если Qсумм=104 кДж/моль, Q=122 кДж/моль; массовая доля связующего, образовавшего переходный слой , γ=0,63.

Выразив Qдоп из соотношения, приведённого в условии задачи, и подставив численные значения величин, получаем:

Qдоп=

Ответ:Qдоп=94 кДж/моль


35. На основании известных экспериментальных значений тепловых эффектов отверждения эпоксидной смолы без наполнителя

Q=-122 кДж/моль, отверждения эпоксидной смолы с полипропиленовой нитью Qсумм=-132 кДж/моль и эффективных энергий активации, кДж/моль, отверждения эпоксидной смолы без наполнителя Е=27, эпоксидной смолы с полипропиленовой нитью Есумм=100 найти значения параметров А и В соотношения Е=А+В|Q|, считая, что значения А и В одинаковы для отверждения ненаполненных и наполненных систем.

Решение:

Применив зависимость Е от |Q| для ненаполненной и наполненной эпоксидной смолы, получаем систему двух линейных уравнений с двумя неизвестными:

27=А+122В

100=А+132В,

Откуда имеем: А=27-122В; 100=27-122В+132В;