4. Наиболее распространенные типы гальванических элементов
4.1 Свинцовые аккумуляторы (SLA)
Аббревиатура SLA расшифровывается как Sealed Lead Acid — герметичная свинцово-кислотная батарея (рис. 5). И уже само название указывает на наиболее значительное усовершенствование, сделанное в ее конструкции. Свинцовый аккумулятор впервые собрал Гастон Плантэ: в 1859 г. он опустил две свинцовые пластины в резервуар с серной кислотой и некоторое время пропускал через них электрический ток. Затем, подключив к пластинам гальванометр, зарегистрировал генерируемое резервуаром напряжение. Теперь рассмотрим химический процесс, который протекает в SLA-аккумуляторе "розлива" 90-х годов.
Батарея состоит из двух пластинчатых электродов (положительного и отрицательного), разделенных слоем, изготовленным из нетканой материи или тонкого стекловолокна. Пластины помещены в герметический корпус, снабженный клапаном безопасности, открывающимся при давлении, превышающем 43 кПа, и залиты разбавленной серной кислотой. Оба электрода изготовлены из сплава свинца, олова и кальция, положительный содержит пористый диоксид свинца (PbO2), а отрицательный чистый свинец (Pb). В процессе разрядки диоксид и чистый свинец превращаются в сульфаты (PbSO4). Соответственно некоторая часть кислоты, отдав атомы серы, трансформируется в обыкновенную воду. Во время зарядки происходит обратная реакция, при этом, если попытаться продолжить ее после достижения аккумулятором максимальной емкости, на положительном электроде начинает выделяться газ (кислород). Раньше, когда корпуса батарей изготовляли открытыми, это не составляло проблемы, однако после герметизации выделение газа чревато взрывом. Чтобы избежать скопления кислорода, отрицательный электрод делают по размерам несколько больше положительного, поэтому до определенного момента весь выделившийся газ будет им связываться, т. е. чистый свинец опять превратится в сульфат:2Pb + O2 + 2H2SO4 = 2PbSO4 + 2H2O. (19)
Конечно, когда-нибудь и этой реакции придет конец, но для таких случаев и существует выпускной клапан.
Свинцовые батареи отличаются большей массой, низкой электрической плотностью и коротким сроком эксплуатации (200, максимум 500 циклов). Что привлекает покупателей, так это высокое напряжение элемента (6 или 12 В), низкая цена и неприхотливость SLA. У них отсутствует эффект памяти, а скорость саморазрядки не превышает 40% в год. Хранить их следует только в заряженном состоянии, поскольку при глубоком разряде начинается процесс сульфитации, значительно ухудшающий показатели батареи. Относительно недавно SLA-аккумуляторы можно было заряжать исключительно с помощью метода медленной зарядки (6—12 ч). Однако в последних моделях (в частности, Panasonic) возможно использование и быстрого режима (1—2 ч). Диапазон допустимых температур для зарядки от 0 до +40 °C, для разрядки от -15 до +50 °C.
Свинцовые батареи находят применение в самом разнообразном портативном оборудовании, в том числе в профессиональных видеокамерах и мощных сотовых телефонах класса "Атташе" (перевозятся в кейсах или встраиваются в автомобиль).
4.2 Никель-кадмиевые аккумуляторы (NiCd)
Щелочные аккумуляторы, содержащие никель, пожалуй, наиболее популярны сегодня. Во всяком случае, среди производителей и покупателей мобильных телефонов, карманных ПК и ноутбуков. Никель-кадмиевые батареи были изобретены еще 1899 г. Вальдмаром Джунгнером (Waldmar Jungner). На пути к широкому внедрению они прошли все этапы эволюции, которые преодолели в свое время и свинцовые аккумуляторы. Вначале выделяющийся во время зарядки на положительном электроде кислород мешал созданию герметического корпуса, однако в 1947 г. инженеры додумались сделать отрицательный электрод больше положительного — теперь весь газ поглощается непрореагировавшей его частью.
На случай, если процесс зарядки затянется на непредвиденно долгое время, в конструкции аккумулятора обычно предусмотрен предохранительный клапан, который выпустит излишек кислорода из корпуса. Однако, как несложно догадаться, "выхлоп" будет мало похож на "дуновение зефира", и вместе с газом выплеснется солидная порция щелочного электролита, что не слишком хорошо для устройства, в котором установлена батарея. Конструкция NiCd-аккумулятора представлена на рис. 6. Основными ее элементами являются положительный и отрицательный электроды, свернутые в цилиндр вместе с разделяющим слоем, помещенные в металлический корпус и залитые электролитом. Положительный электрод содержит гидрооксид никеля (NiOOH), а отрицательный — кадмий в составе компаунда. Разделяющий слой по традиции изготовлен из нетканого материала, устойчивого к воздействию щелочи. Во время разрядки активные никель - и кадмийсодержащие компоненты электродов трансформируются в соответствующие гидрооксиды — Ni(OH)2 и Cd(OH)2. Щелочной электролит не участвует в реакции.
Скорость саморазрядки — одно из наиболее слабых мест NiCd-батареи. Потеря заряда достигает 10% за первые сутки, а затем по 10% в месяц. Но здесь потребителя подстерегает коварная двойственность природы никель-кадмиевого химического процесса. С одной стороны, нельзя допускать глубокого разряда аккумулятора (т. е. снижения выходного напряжения ниже предела, обозначенного в паспорте устройства), но с другой — заряжать его раньше, чем он достигнет этой границы, — себе навредить. Ставший уже притчей во языцех "эффект памяти" приведет к потере остаточной емкости, иначе говоря, емкости, сохранившейся на момент начала зарядки. Эффект обусловлен появлением кристаллических образований на кадмиевом электроде, что ведет к уменьшению его полезной площади. Чтобы избежать этого, всегда необходимо проводить полную разрядку аккумулятора. Производители вообще советуют ежемесячно выполнять так называемые восстановительные циклы (несколько полных разрядок/зарядок). Соблюдая эти нехитрые, хотя и довольно утомительные правила эксплуатации, вы сможете продлить срок службы никель-кадмиевого аккумулятора с гарантированных 500—1000 и более циклов. Учитывая его невысокую стоимость, с экономической точки зрения — это весьма выгодный вариант.
Напряжение одного никель-кадмиевого элемента всего 1 В, поэтому их собирают в батареи. Плотность энергии ~60 Вт•ч/кг. Температурный диапазон зарядки: от 0 до +45 °C, разрядки — от -20 до +65 °C. Допускается быстрая зарядка.
4.3 Никельметаллгидридные аккумуляторы (NiMH)
Разрабатывались с целью замены своих несовершенных никель-кадмиевых собратьев, однако далеко не все задуманное удалось. По конструкции никельметаллгидридные батареи, как вы понимаете, чрезвычайно похожи на своих предшественников. Однако на этот раз отрицательный электрод изготовляется из сплавов, поглощающих водород. Эти двухкомпонентные сплавы были открыты более 20 лет назад и способны связывать объемы водорода в тысячи раз больше собственного. Металлы, входящие в состав материала, принято обозначать буквами A и B, а все возможные комбинации классифицируют по соотношению компонентов, например AB, AB2, A2B, AB5 и т. д. В настоящий момент наилучшими считаются варианты AB2 (TiNi2, ZnMn2) и AB5 (например, LaNi5). В частности, сплавы, относящиеся к последнему типу, используются в продукции Matsushita Electric, которой принадлежит торговая марка Panasonic. Щелочной электролит по-прежнему не принимает участия в реакции, основывающейся на перемещении ионов водорода между электродами. В ходе зарядки гидрооксид никеля (Ni(OH)2) превращается в оксигидрит (NiOOH), отдавая водород сплаву отрицательного электрода. Поглощение водорода не является изотермической реакцией, поэтому металлы для сплава всегда подбирают таким образом, чтобы один из них при связывании газа выделял тепло, а другой, наоборот, поглощал. В теории это должно было обеспечить тепловой баланс, тем не менее, никельметаллгидридные аккумуляторы греются существенно сильнее, нежели никель-кадмиевые. Не увеличился и срок службы: для нового типа, как и для старого, он равняется 500 циклам. Кроме того, проявляется даже эффект памяти несмотря на отсутствие кадмия. Восстановить прежнюю емкость можно выполнив цикл полной разрядки/зарядки. Саморазряд для NiMH-технологии — особая проблема, он в 1,5—2 раза выше, чем для NiCd-аккумуляторов.