Смекни!
smekni.com

Оптимизация химического состава сплава (стр. 2 из 3)

Математическая модель адекватна.

2.1.5. Переход от кодированных переменных к натуральным

2.2. Расчет уравнения для С, Si, относительного удлинения

2.2.1. Составление матрицы планирования

Таблица 5

Матрица планирования

N x1 x2 x1x2 y2
1 1 1 1 6,7(40) 6,7
2 1 -1 -1 5(20) 5,5
6(357)
3 -1 1 -1 7,3(45) 9,85
10,7(12)
10,7(191)
10,7(310)
4 -1 -1 1 6(19) 6,2
6(134)
7(165)
6(253)
6(372)

2.2.2. Расчет дисперсии воспроизводимости

Таблица 6

Опыты в центре плана

N x1 x2 y2
3 0,77 0,32 7,3 6,1
96 5,3
118 7,3
138 5,3
215 5,3
237 7,3
257 5,3
334 5,3
356 7,3
376 5,3

2.2.3. Определение коэффициентов регрессии

b0 =(6,7+5,5+9,85+6,2)/4=7,0625

b1 =(6,7+5,5-9,85-6,2)/4=-0,9625

b2 =(6,7-5,5+9,85-6,2)/4=1,2125

b3 =(6,7-5,5-9,85+6,2)/4=-0,6125

2.2.4.Проверка значимости коэффициентов регрессии

;

;

;

;

tтабл. = 2,26; t3< tтабл., t2< tтабл., т.е. эти коэффициенты незначимы.

2.2.5. Проверка адекватности математической модели

Y1=7,0625+1,2125=8,275

Y2=7,0625-1,2125=5,85

Y3=7,0625+1,2125=8,275

Y4=7,0625-1,2125=5,85

Критерий Фишера:

; Fрасч. <Fтабл.

Математическая модель адекватна.

2.2.5. Переход от кодированных переменных к натуральным

2.3. Расчет уравнения для С, Si, предела прочности

2.3.1. Составление матрицы планирования

Таблица 7

Матрица планирования

N x1 x2 x1x2 Y3
1 1 1 1 1079 1079
2 1 -1 -1 1030 1044,5
1059
3 -1 1 -1 1028 1024,5
1010
1040
1020
4 -1 -1 1 1020 1028
1030
1010
1040
1040

3.2.Вычисление дисперсии воспроизводимости

Таблица 8

Опыты в центре плана

N X1 x2 y2
3 0,77 0,32 1010 1006,5
96 1010
118 1030
138 1001
215 991
237 1001
257 991
334 1010
356 1001
376 1020

2.3.3. Определение коэффициентов регрессии

b0 =(1079+1044,5+1024,6+1028)/4=1044

b1 =(1079+1044,5-1024,6-1028)/4=17,75

b2 =(1079-1044,5+1024,6-1028)/4=7,75

b3 =(1079-1044,5-1024,6+1028)/4=9,5

2.3.4. Проверка значимости коэффициентов регрессии

;

;

;

;

tтабл. = 2,26; t3< tтабл., t2< tтабл., т.е. эти коэффициенты незначимы.

2.3.5. Проверка адекватности математической модели

Y1=1044+17,75=1061,75

Y2=1044+17,75=1061,75

Y3=1044-17,75=1026,25

Y4=1044-17,75=1026,25

Критерий Фишера:

; Fрасч. <Fтабл.

Математическая модель адекватна.

2.3.6. Переход от кодированных переменных к натуральным

ГЛАВА 3

ПРОВЕРКА УРАВНЕНИЙ

Проверим составленные уравнения, отражающие влияние содержания углерода и кремния в стали на ее физические свойства.

Таблица 9

Проверка уравнений

N опыта 295 392 149
x1= 0,75 0,73 0,79
x2= 0,39 0,29 0,33
yпр1.= 687 589 589
yрасч1.= 632,69 604,61 643,81
yпр.2= 10,7 6 6
yрасч.2= 8,76 6,335 7,305
yпр.3= 1059 1030 1001
yрасч.3= 1035,1125 1026,2375 1052,8625

ГЛАВА 4

ОПТИМИЗАЦИЯ СОСТАВА СПЛАВА

Необходимо оптимизировать химический состав сплава по C и Si. В ходе работы были выявлены зависимости механических свойств от состава сплава:

σтек. – предел текучести,

абсолютное удлинение,

σпр. – предел прочности;

σтек. =

σпр.=

4.1. Оптимальный состав сплава по пределу текучести

Найти оптимальный состав сплава по пределу текучести, т.е. найти такой состав сплава, который обеспечит минимальный предел текучести при следующих ограничениях:

ГОСТ – 84182-80

Строим график(рис.1).

σтек. min

Координаты:

σпр.:

Координаты:

Оптимальный состав сплава при σтек. min является C=0,7%; Si=0,4%.

σтек.=

Рис. 2. Нахождение минимума предела текучести

4.2.Оптимальный состав сплава по абсолютному удлинению

Найти оптимальный состав сплава по абсолютному удлинению, т.е. найти такой состав сплава, который обеспечит максимальное абсолютное удлинение при следующих ограничениях:

, ГОСТ – 84182-80

Строим график(рис.2).

σтек.

max

Координаты:

σпр.:

Координаты: