Смекни!
smekni.com

Макрокинетика гетерогенных каталитических реакций Устойчивость экзотермических реакций Выбор (стр. 5 из 6)

Выбор типа реакции и условий реализации промышленного процесса. Оптимальный температурный профиль

Основные положения. В любое из расчетных уравнений химического процесса входит ряд переменных: время контакта, температура потока на входе в реактор и температура теплоносителя, скорость потока, диаметр зерна катализатора и т.д., значения которых можно изменять в более или менее широких пределах. Приступая к проектированию химического реактора, необходимо выбрать значения этих переменных так, чтобы добиться наилучшего результата процесса. Число и номенклатура варьируемых переменных определяются принятым типом реактора и его схемой. Последняя также должна быть выбрана оптимальной, а этого в большинстве случаев можно добиться только путем сравнения наилучших результатов процесса, достижимых в реакторах различных типов.

Понятие "наилучшего" должно обладать количественной мерой, называемой критерием оптимальности. Любой применяемый критерий оптимальности имеет экономическую природу и определяется, во-первых, изменением состава, а следовательно, и стоимости реагирующего потока в результате процесса и, во-вторых, затратами на ведение процесса. Не все составляющие критерия оптимальности имеют одинаковое значение. Некоторые из них могут быть настолько малы, что их разумно не принимать во внимание, и в каждом конкретном случае надо решать вопрос о том, каким упрощенным вариантом критерия оптимальности надо пользоваться.

Во многих случаях упрощение критерия оптимальности компенсируется введением дополнительных условий и ограничений, которым должно удовлетворять оптимальное решение. Простейшим, чисто химическим критерием оптимальности может быть выход целевого продукта.

Задача оптимального проектирования реактора определенного типа сводится, таким образом, к разысканию максимального значения критерия оптимальности путем варьирования ряда независимых переменных, допустимые значения которых обычно ограничены технологическими пределами. Проведение процесса в рассчитанном режиме даст наилучший результат, достижимый (в реакторе данного типа) на данном катализаторе при принятых условиях и ограничениях. Сравнивая максимальные значения критерия оптимальности для реакторов различных типов, можно определить, какой тип реактора предпочтителен для осуществления данного процесса.

Рассмотрим одну из простейших и в то же время теоретически наиболее важную задачу оптимизации - определение оптимальной температуры в каждом сечении реактора идеального вытеснения. Состав смеси продуктов реакции на выходе трубчатого реактора зависит от профиля температуры по длине аппарата. Очевидно, должен существовать такой продольный температурный профиль, при котором выход целевого продукта или, в общем случае, значение принятого критерия оптимальности будет максимальным. Этот температурный профиль будет для данного процесса оптимальным. Оптимальный температурный профиль (ОТП), как правило, практически не может быть реализован, однако к нему можно приблизиться, применяя различного типа секционированные реакторы. Теоретическая роль ОТП в реакторе идеального вытеснения состоит в том, что он дает наилучшие возможные показатели, достижимые в процессе с данной кинетикой - тот идеал, к которому следует стремиться при проектировании промышленного процесса. Из аналогии между процессом в реакторе идеального вытеснения и периодическим процессом следует, что в точности тот же результат будет достигнут в периодическом реакторе с температурой, оптимальным образом изменяющейся со временем. Подчеркивая эту аналогию, будем использовать вместо продольной координаты Xтекущее время контакта t = Х/и (где и - линейная скорость потока в реакторе идеального вытеснения).

Верхний предел температуры. В некоторых случаях можно сразу указать характер ОТП. Если рост температуры, ускоряя процесс, увеличивает также, независимо от состава реагирующей смеси, его избирательность (или, по крайней мере, не влияет на последнюю), оптимальная температура должна быть как можно более высокой.

Так, в случае единственной необратимой реакции повышение температуры только увеличивает ее скорость, а в случае обратимой эндотермической реакции - к тому же и смещает равновесие в сторону образования целевого продукта. Если, помимо основной реакции образования целевого продукта, имеется параллельная или (и) последовательная побочная реакция с энергией активации, меньшей, чем у основной, то повышение температуры увеличивает и скорость, и избирательность процесса. Во всех этих случаях температуру процесса следует поддерживать на верхнем допустимом пределе Т*. Эта предельная температура может определяться, например, условиями скачкообразного перехода процесса в диффузионный режим, при котором, вследствие сильного разогрева активной поверхности плавится или дезактивируется катализатор или начинают идти незаметные при низкой температуре побочные реакции. Другим фактором, ограничивающим допустимую температуру процесса, может быть возникновение при повышенных температурах нежелательных реакций, идущих в объеме (вне поверхности катализатора) по цепному механизму. Предельная температура Т*-зависит от состава реагирующей смеси и поэтому может изменяться по длине реактора. Так, если необратимая сильно экзотермическая реакция первого порядка, идущая на внешней поверхности непористых частиц, должна по технологическим условиям проводиться в кинетическом режиме, то верхний предел температуры определяется критическим соотношением между параметрами μ и Θ в точке "зажигания" реакции. Сами параметры μ и Θ определены формулами (56), где под Си Тследует теперь понимать текущие значения концентрации исходного вещества и температуры потока в данном сечении реактора. Из этих формул и вида кривой зажигания следует, что максимально допустимая температура процесса повышается с уменьшением концентрации исходного вещества. Если переход в диффузионную область допустим, то после этого перехода скорость реакции практически не зависит от температуры, так что дальнейшее повышение температуры становится ненужным.

Обратимая экзотермическая реакция. В случае обратимой экзотермической реакции повышение температуры ускоряет обратную реакцию сильнее, чем прямую, так что равновесие процесса смещается в нежелательную сторону. При некоторой температуре скорость образования целевого продукта r (С, Т) проходит через максимум; эта оптимальная температура зависит от состава реагирующей смеси, уменьшаясь по мере уменьшения концентрации исходного вещества. Таким образом, вначале, пока еще не накопилось значительное количество конечного продукта, процесс выгодно вести при высокой температуре, чтобы увеличить скорость прямой реакции, а затем температуру следует снижать, чтобы, сместив равновесие в нужную сторону, добиться максимального выхода целевого продукта. Температура в каждом сечении реактора должна быть выбрана так, чтобы скорость образования целевого вещества в этом сечении была максимальной, т.е., чтобы выполнялось равенство:

r /∂T=0 (57)

Если температурная зависимость константы скорости реакции определяется уравнением Аррениуса, где Е1, Е2 - энергия активации; Z 1, Z 3 - предэкспоненциальные множители соответственно прямой и обратной реакции; R - газовая постоянная; f ( С) и g (С) - кинетические функции прямой и обратной реакций; в случае экзотермической реакции Е2> Е1. Концентрации исходных веществ и продуктов реакции связаны между собой линейными соотношениями; поэтому функции, выражающие зависимость скорости прямой и обратной реакций от концентраций реагентов, можно выразить через концентрацию С одного из исходных веществ, которое принимается за ключевое. Дифференцируя функцию. (58) по температуре и приравнивая производную нулю, находим оптимальную температуру процесса как функцию концентрации ключевого вещества, где h = E2 - E1 - теплота реакции.

Условие для оптимальной температуры можно привести к форме, не зависящей от кинетических функций f (С), g ( С). Обозначим через Т ртемпературу, при которой смесь того же состава, что и в рассматриваемом сечении, находилась бы в равновесии. Так как r (Тp) = 0.

Сравнение формул ( IX .3) и ( IX .4) приводит к соотношению.

Конечно, переход от формулы (59) к (61) возможен только в том случае, если равновесная температура, соответствующая данному составу, существует и кинетические функции f (С), g (С) правильно описывают кинетику процесса в окрестности равновесия. Формулы (59), (61) показывают, что оптимальная температура, так же, как и температура равновесия, снижается с увеличением степени превращения. Так как при малых степенях превращения обе величины неограниченно возрастают, в сечениях, близких к входному, оптимальная температура не может быть достигнута и температуру реакции следует фиксировать на верхнем пределе Т*. В частности, в случае реакции первого порядка равновесная температура обращается в бесконечность при степени превращения η = = 1 - С/С 0, равной и оптимальная - при степени превращения. Поэтому при степенях превращения η < η* повышение температуры всегда приводит к ускорению реакции.

Оптимизация стадийных c хем

Методы оптимизации стадийных схем. При проектировании реальных технологических процессов оптимальному выбору подлежит лишь ограниченное число параметров. В этом состоит существенное отличие практических задач оптимизации от задачи определения ОТП. В гибкой и эффективной реакторной схеме число варьируемых параметров Ф может, однако, быть весьма большим. Примером такой схемы является цепочка последовательно соединенных реакторов, размеры и режим работы которых должны быть выбраны оптимальным способом.