Смекни!
smekni.com

Участие аналогов убихинона в переносе электронов в дыхательной цепи митохондрий (стр. 4 из 12)

Уже в 30х годах была установлена тесная связь между процессами окисления (поглощения кислорода) и образования АТФ (фосфорилирование), но вот природа это связи была непонятна вплоть до 60х годов.

В 1961 году Митчелл предложил идею хемиосматического энергетического сопряжения в дыхательной цепи. Можно выделить три основных положения принципа хемиосматического сопряжения [54]:

1. Внутренняя мембрана митохондрий, где происходят окислительно-восстановительные реакции дыхания, непроницаема для ионов водорода (Н+) (точнее, протон диффундирует через двойной фосфолипидный слой очень медленно по сравнению со скоростью потребления кислорода). В то же время мембраны хорошо проницаемы для воды и благодаря электролитической диссоциации Н2О D Н+ + ОН- запас протонов в водных растворах неограничен.

2. Внутренняя мембрана митохондрий ассиметрична: одни компоненты дыхательной цепи контактируют с матриксом (например, активный центр комплекса I), другие расположены внутри мембраны (например, убихинон), третьи контактируют с межмембранным пространством (например, цитохром с).

3. Разрушение мембраны не препятствует окислению НАДН кислородом, а даже ускоряет дыхание. Энергетическое сопряжение (синтез АТФ) при этом полностью прекращается: происходит разобщение процессов переноса электронов и запасания энергии. Для разобщения необязательно полностью разрушать мембрану – достаточно, сохраняя ее структуру, добавить вещества, резко повышающие проницаемость мембраны для протонов.

Спустя примерно двадцать лет хемиосмотическая концепция сопряжения транспорта электронов и образования АТФ в дыхательной цепи стала общепринятой теорией. И по сей день продолжаются работы по изучению и детальной расшифровки всех участников дыхательной цепи.

Организация дыхательной цепи

Дыхательная цепь является частью процесса окислительного фосфорилирования. Компоненты дыхательной цепи катализируют перенос электронов НАДН+Н+ или восстановленного убихинона (QH2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН+Н+ и, соответственно, QH2) и акцептора (О2) реакция является высоко экзергонической. Большая часть выделяющейся при этом энергии используется для создания градиентов протонов и, наконец, для образования АТФ с помощью АТФ-синтазы.

Дыхательная цепь включает три белковых комплекса (комплексы I III IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики – убихинон (кофермент Q) и цитохром с (рис. 9). Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V, хотя она не принимает участие в переносе электронов.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками. К ним принадлежат флавин (ФМН) или ФАД, в комплексах I и II, железосерные центры (в I, II и III) и группы гемма (II, III и IV).

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН+Н+ комплекс I переносит электроны через ФМН и Fe/S- центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальный дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин. При этом окисленная форма кофермента Q восстанавливается до ароматического убигидрохинона. Последний переносит электроны на комплекс III, который поставляет их через два гемма b, один Fe/S- центр и гемм с1 на небольшой геммсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра. (Cua и Cub) и геммы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2-, который связывает два протона и переходит в воду. Поток электронов сопряжен с образованными комплексами I, III и IV протонным градиентом.

Рассмотрим теперь по подробнее все комплексы, составляющие дыхательную цепь.

Комплекс I или НАДН-убихинон-редуктаза.

Комплекс I (НАДН-убихинон-редуктаза) (рис. 10) катализирует транспорт восстановительных эквивалентов от НАДН к убихинону, чувствительный к действию ротенона и пиерицидина и сопряженный с запасанием энергии. Это самый большой и сложно устроенный комплекс дыхательной цепи. Он состоит из 14 (у бактерий)-45 разных полипептидов с общей молекулярной массой 600-900 кДа, ФМН-содержащего флавопротеида, 16-24 атомов негемового железа и эквивалентного количества лабильного сульфида [27].По форме НАДН-дегидрогеназа напоминает “старый башмак”, он не помещается в мембране и частично торчит “голенищем” наружу. Или НАДН-дегидрогеназа имеет L-образную форму и частично выдается из мембраны.

Рисунок 10: Комплекс I (NADH-убихинон-редуктаза).

7 пептидов комплекса I кодируются митохондриальным геномом [28], остальные - ядерным (импортируються из цитозоля в митохондрии). Большинство редокс-центров связано с двумя фрагментами комплекса: флавопротеином (Фп) (или НАДН-дегидрогеназой) и железобелком (IP). Первый содержит ФМН и некоторые из FeS-кластеров, в то время как в состав второго входят только железосерные центры.

Флавопротеин состоит из трех полипептидов в соотношении 1:1:1 (массы 51, 24 и 10 кДа). Он катализирует окисление НАДН некоторыми искусственными акцепторами электронов (но не природным акцептором KoQ). Тяжелая субъединица связывает НАДН, она содержит ФМН (рис.11) и четыре атома железа. Перенос водорода от НАДН к ФМН специфически тормозится реином.

Средняя субъединица, скорее всего, содержит FeS-кластер с двумя атомами железа (рис. 12). FeS-кластеры FeSI1a и FeSI1b связаны с большой субъединицей Фп (их потенциалы -0,37 и -0,22 соответственно). В мембране Фп не доступен для гидрофобных модификаторов белка, а, значит, прикрыт другими белковыми субъединицами или фосфолипидами.

Фрагмент IP содержит 6 полипептидов (75, 49, 30, 18, 15 и 13 кДа) и 12 атомов железа. FeS-кластеры содержат по четыре атома железа, два из них ассоциированы с 75 и 49 кДа-полипептидами, которые пересекают мембрану и обращены в водную фазу. Третий кластер ассоциирован с эквимолярным комплексом субъединиц 30 и 13 кДа. Редокс-потенциалы всех кластеров похожи - около – 0,24 В. Один из кластеров (FeSI3) локализован вблизи ФМН.

Рисунок 12: Fe-S кластеры.

На долю Фп и IP приходиться около 30% от общего количества белка комплекса I, а остальной белок содержит FeSI2-кластер (-0,02 В), который играет роль восстановителя убихинона (рис.11). Между FeSI2 и KoQ локализован участок торможения комплекса ротеноном, пирицидином, барбитуратами (например, амптал) и некоторыми аналогами KoQ.

Таким образом, с НАДН электроны передаются на ФМН, после чего через цепь FeS-кластеров доходят до FeSI2, где происходит восстановление убихинона до убихинола.

Рисунок 13: Схема передачи электронов от ФМН через FeS-кластеры на убихинон.

Также убихинон является акцептором электронов в реакции окисления сукцината до фумарата, которую катализирует комплекс II дыхательной цепи.

Комплекс II (или сукцинатдегидрогеназа).

Комплекс II меньше и проще устроен, чем комплекс III. Это фермент класса оксидоредуктаз; он состоит из 4 субъединиц (с молекулярными массами около 70, 30, 14 и 12 кДа) и содержит в качестве окислительно-восстановительных групп флавинадениндинуклеотид (рис. 11) (ФАД ковалентно связан с самой тяжелой субъединицей) и 3 Fe-S-кластера (рис. 14) (ассоциированы с 30 кДа субъединицей). Малые субъединицы (С и D) сукцинатдегидрогеназы высших организмов (и фумаратредуктазы микроорганизмов) содержит гем группы b и сайт связывания убихинона, который является конечным акцептором электронов. Субъединицы С и D интегрированы в мембрану, субъединицы А и В (большие субъединица) расположены в матриксе. Активный центр (содержит остатки аргинина, цистеина и гистидина), связывающий сукцинат, локализован на самой тяжелой субъединице А. Субъединица А также содержит ФАД. Fe-S центры локализованы в субъединице B. Сукцинатдегидрогеназа проявляет оптимальную каталитическую активность при рН 7,5-8 [29].

Таким образом, электроны с сукцината передаются на ФАД, с которого переносятся на Fe-S центры, а потом уже достигают CoQ (этот путь по длине равен 40А, тогда как 11 А - максимальное расстояние для быстрого транспорта электронов) (рис.14).