Смекни!
smekni.com

Расчет надежности электроснабжения подстанции Южная (стр. 3 из 6)

;

Вероятность восстановления масляного выключателя ВКЭ поределяется по формуле

Рвос.вк = 1-е-m.

Результаты расчетов по приведенным выше формулам сведены в табл.5,6,7.

Аналогично проведем расчеты для секционного маслянного выключателя. Исходные данные и результаты расчетов сведены в табл. 8,9,10.

Таблица 8

Статистический ряд внезапных и постепенных отказов

секционного масляного выключателя

X, ч

X, ч

X, ч

Y, ч

Y, ч

Y, ч

8341,45

9107,29

9104

9637

12466

8128

9313,07

11096,7

11422,3

10820

15119

12321

11123

11982,9

11837

9137

15871

10675

13500

12238,5

13142

11801

12352

8682

16607,9

21820,4

16512,2

11483

12556

15490

10066,5

12275,9

14392,1

10180

10475

18424

6752,77

7111,97

8245,21

18883

17814

15031

7520,51

8170,86

7394,87

17455

18960

18088

11143

Т

l

Yср

l0

11212

8,9E-05

13320

7,5E-05

Таблица 9

Статистический ряд времени восстановления внезапных

и постепенных отказов секционного масляного выключателя

восстановление

16,5

19,9

22,6

19,7

25,5

25,8

19,5

21,2

17,9

24,5

19,3

21,0

18,3

21,8

17,0

18,5

21,1

20,9

17,4

17,4

Т=20,2969

m=0,04927

Таблица 10.

Результаты расчетов

Imax

Imin

n

Iоткл

5,5

4

20

20

SI

рr

sr

k

400

0,00507

0,01057

162

1.3. Модель отказов воздушной линии электропередач

ЛЭП рассмотрим как элемент условно состоящий из двух последовательно соединенных элементов. В одном из которых может появиться внезапный отказ, а в другом постепенный. Вероятность безотказной работы представим как произведение вероятности двух независимых событий соединенных последовательно отностительно надежности.

РЛЭП(t)=Рв(t)*Ри(t).

Дальнейший расчет проведем как и для трансформатора. Статистические данные приведенные в таблице 11 приведены к единичной длине 1 км, как для внезапных и постепенных отказов.

Таблица 11

Статистический ряд внезапных и постепенных отказов для ЛЭП

X, г

X, г

X, г

Y, г

Y, г

Y, г

174,11

203,04

179,13

309,12

326,04

343,86

180,83

41213

187,67

316,75

334,17

351,59

189,38

208,17

194,54

324,5

341,94

313,62

201,33

177,41

211,58

332,25

349,68

321,37

206,46

185,96

196,21

340,02

312,08

329,12

175,72

192,79

213,29

347,75

319,82

338,01

184,25

204,75

197,92

310,54

327,58

345,78

191,08

209,88

215,67

318,29

336,09

363,25

Т

l

Yср

Dt

1904

0,00052523

331

10

В теории надежности в качестве основного распределения времени безотказной работы при внезапных отказах ЛЭП принимается показательное распределение:

Постепенные отказы ЛЭП происходят в основном по причине износа изоляции. Износ можно описать законом распределения Вейбула-Гниденко.

где t0 — порог чувствительности, то есть элемент гарантировано не откажет, в интервале времени от 0 до t0 может быть равно нулю. Тогда окончательно имеем:

PЛЭП(t) = e-lt×e-ct=.

Параметр показательного закона l находим по формуле:

где хср— среднеее значение наработок на отказ.

Среднее время безотказной работы определим по формуле

Оценим параметры распределения Вейбула-Гниденко. Для этого вычислим среднеее значение наработки на отказ

Разобьем выборку y на интервалы, которые выберем по формуле

Подсчитаем сколько отказов попало в каждый из полученных интервалов

Таблица 12

интервалы

1

2

3

4

5

6

мин

309,12

318,86

328,61

338,35

348,10

357,84

макс

319

329

338

348

358

368

1

309,12

316,75

324,5

332,25

340,02

347,75

2

310,54

318,29

326,04

334,17

341,94

349,68

3

312,08

319,82

327,58

336,09

343,86

351,59

4

313,62

321,37

329,12

338,01

345,78

363,25

Yicp

311

319

327

335

343

353

pi

0,1666666

0,1666666

0,1666666

0,16667

0,16667

0,16667

D

s

n

1/a

C

T

l

199

14

0,0425237

0,035

5,7E-73

331

0,00302

Отностительную частоту событий определяем по формуле