Смекни!
smekni.com

Государство и право 3 (стр. 5 из 7)

Кроме того, на той же резиновой модели легко заметить что продольное укорочение волокон на вогнутой стороне сопровождается удлинением в поперечном направлении, а продольное удлинение волокон на выпуклой стороне — сужением в поперечном направлении, т. е. явления протекают так же, как при простом растяжении и сжатии. Вследствие этого верхняя и нижняя стороны сечения, т. е. линии ab и cd, искривятся, причём центр кривизны их будет один и тот же. Верхняя линия ab удлинится, а нижняя cd укоротится.

Рис. 2

Вследствие удлинения одних волокон и укорочения других, вызываемых в брусе изгибающими моментами, в поперечных сечениях бруса возникают нормальные напряжения растяжения и сжатия. Величина этих напряжений в данном поперечном сечении зависит от величины действующего в этом сечении изгибающего момента. Выше мы видели, что в случаях изгиба бруса силами, кроме изгибающего момента, в поперечных сечениях действуют ещё поперечные силы, стремящиеся произвести сдвиг бруса. Поперечные силы вызывают в брусе касательные напряжения, величина которых в сечении зависит от величины поперечной силы в данном сечении. Таким образом, в изгибаемом силами брусе возникают нормальные и касательные напряжения.

Прежде чем перейти к определению величин этих напряжений, рассмотрим способы определения изгибающих моментов и поперечных сил в различных поперечных сечениях изгибаемых брусьев.

Опоры и опорные реакции балок. Опоры балок по их устройству могут быть разделены на следующие три основных типа:

1)шарнирно-неподвижная опора,

2)шарнирно-подвижная опора

3)жёстко-защемляющая опора.

Шарнирно-неподвижная опора показана на фиг. 3, а. Конец балки опирается на каток О. Последний лежит на опорной подушке А, которая в свою очередь жёстко прикреплена к опорной плоскости N. Такая опора не даёт концу балки возможности передвигаться в каком-либо направлении, позволяя ему только поворачиваться относительно центра шарнира О.

В дальнейшем неподвижно-шарнирную опору будем изображать схематически, как указано на фиг. 3, б. Относительно реакции, возникающей в шарнирно-неподвижной опоре, известно только, что она лежит в плоскости действия нагружающих балку сил и проходит через центр шарнира. Величина и направление реакции нам неизвестны. Неизвестную по величине и направлению реакцию R всегда можно заменить двумя составляющими её реакциями: одной вертикальной А и другой горизонтальной Н. В этом случае вместо реакции, неизвестной по величине и направлению, получим две реакции, известные по направлению и неизвестные по величине. Таким образом, можно сказать, что шарнирно-неподвижная опора даёт две неизвестные по величине реакции.

Рис. 3

Шарнирно-подвижная опора показана на фиг. 4, а. Такая опора отличается от неподвижно-шарнирной тем, что у неё опорная подушка поставлена на катки, дающие ей возможность передвигаться вместе с концом балки вдоль оси последней по опорной плоскости N. В дальнейшем шарнирно-подвижную опору будем изображать схематически, как указано на фиг. 4, б. Шарнирно-подвижная опора налагает на конец балки только одну связь — она не дает возможности перемешаться концу балки в направлении, перпендикулярном к оси балки. Следовательно, шарнирно-подвижная опора даёт лишь одну реакцию, неизвестную по величине, но известную по направлению.

Рис. 4

Жёсткое защемление конца балки показано схематически на рис. 5. Такая опора препятствует всякому перемещению конца балки в плоскости действия внешних нагрузок и, кроме того, она препятствует вращению конца балки.

В жёстком защемлении возникает реакция, неизвестная по величине и направлению, препятствующая перемещению конца балки, и реактивный момент, препятствующий повороту конца балки. Неизвестную реакцию R

можно всегда заменить двумя реакциями: одной вертикальной А и другой горизонтальной Н. На этом основании можно сказать, что на опоре, представляющей жёсткое защемление, возникают три неизвестные реакции: вертикальная реакция А, горизонтальная реакция Н и опорный момент m.

Рис. 5

В практике чаще всего силы, изгибающие балку, действуют перпендикулярно к оси балки. В этих-случаях число неизвестных реакций, возникающих на опорах, уменьшается, так как реакция вдоль оси балки в шарнирно-неподвижной опоре и в опоре, представляющей жёсткое защемление конца, делается равной нулю. Таким образом, для балок, изгибаемых нагрузками, перпендикулярными к оси балки, будем иметь: в шарнирно-неподвижной и шарнирно-подвижной опорах по одной неизвестной реакции А, направленной перпендикулярно к оси балки, в жёстком защемлении — две неизвестные реакции: реакцию А, перпендикулярную к оси балки, и реактивный момент m.

Определение опорных реакций балок.

В случае действия на балку сил, лежащих в одной плоскости, статика дает три уравнения равновесия:

т. е. для равновесия балки необходимо, чтобы суммы проекций всех сил, приложенных к балке, вместе с реакциями опор на оси х и у были равны нулю.

Кроме того, должна быть равна нулю и сумма моментов всех сил.

Если силы, изгибающие балку, перпендикулярны к её оси, то уравнение ∑Х = 0 обращается в тождество и для определения реакций остаётся два уравнения статики:

Если балка при поперечном изгибе имеет такие опоры, что общее число реакций, возникающих на опорах, не превосходит двух, то последние могут всегда быть определены из двух уравнений статики.

Такие балки, реакции которых могут быть определены из уравнений статики, называются статически определимыми балками. Статически определимые балки могут быть только следующих двух видов:

1) балка с одним жёстко-защемлённым и другим свободным концом (рис. 6, а) и

2) балка с одной шарнирно-неподвижной и другой шарнирно-подвижной опорами (рис. 6, б и 6, в).

Рис. 6

Балка, изображённая на фиг. 6, в, имеет свешивающиеся концы. Такую балку принято называть консольной, а свешивающиеся концы — консолями.

Балки, у которых общее число реакций опор больше числа уравнений равновесия статики, называются статически неопределимыми. В случае статически неопределимых балок реакции опор определяются из совместного решения уравнений статики и уравнений деформации балок.

Изгибающий момент в любом сечении балки равен алгебраической сумме моментов внешних сил, действующих на отсеченную часть балки: МИ = ΣМ0(Fi).

Поперечная сила в любом сечении балки равна алгебраической сумме проекций внешних сил, действующих на отсеченную часть балки: Qy = ΣFiy.

Значения поперечных сил и изгибающих моментов в различных сечениях балки могут быть неодинаковы, поэтому строятся эпюры поперечных сил и изгибающих моментов. Для определения поперечных сил и изгибающих моментов необходимо знать правила знаков.

Правила знаков для поперечных сил.

-поперечная сила считается положительной в том случае, если внешние силы поднимают левый конец балки или опускают правый (рис. 7,а).

-поперечная сила считается отрицательной в том случае, если внешние силы опускают левый конец балки или поднимают правый конец (рис. 7,б).

а б

Рис. 7

Правила знаков для изгибающих моментов.

-изгибающий момент считается положительным, если внешние силы, действующие на левый конец балки, поворачивают его по часовой стрелке, а действующие на правый — против часовой стрелки (рис. 8,а).

-изгибающий момент считается отрицательным, если внешние силы, действующие на левый конец балки, поворачивают его против часовой стрелки, а действующие на правый — по часовой стрелке (рис. 8,б).

3.3
3.4

а б

Рис. 8

Последовательность построения эпюр поперечных сил

и изгибающих моментов:

1. Под нагруженной балкой строим расчетно-графическую схему.

2. Используя три уравнения: ΣFix =0, ΣFiy = 0, ΣM(Fi) = 0, определяем реакции опор балки (обязательно выполнить проверку решения).

3. Используя метод сечений, определяем значения поперечных сил в характерных точках, т.е. точках, в которых приложены внешние нагрузки (при этом удобнее использовать прямое правило знаков, т.е. разбивать балку слева направо).

4. По полученным значениям поперечных сил строим эпюру Qy под балкой проводим прямую, параллельную ее оси, и от этой прямой в характерных точках откладываем перпендикулярные поперечным силам отрезки, соответствующие выбранному масштабу.