Одно из первых определений этого понятия принадлежит выдающемуся австрийскому физику Эрвину Шредингеру, который сформулировал его в своей книге "Что такое жизнь? С точки зрения физика". В ней он ясно указал, что законы физики лежат в основе образования биологических структур, и подчеркнул, что характерная особенность биологических систем состоит в обмене энергией и веществом с окружающей средой. Он писал:
Средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды.
Взаимодействуя со средой, открытая система не может оставаться замкнутой, ибо она вынуждена заимствовать извне либо новое вещество или свежую энергию и одновременно выводить в среду использованное вещество и отработанную энергию. Поскольку между веществом (массой) и энергией существует глубокая взаимосвязь, выражаемая уравнением Эйнштейна: Е = те2, то можно сказать, что в ходе своей эволюции система постоянно обменивается энергией с окружающей средой, а следовательно, производит энтропию. Но в отличие от закрытых систем эта энтропия, характеризующая степень беспорядка в системе, не накапливается в ней, а удаляется в окружающую среду. Это означает, что использованная, отработанная энергия рассеивается в окружающей среде и взамен ее из среды извлекается новая, свежая энергия, способная производить полезную работу.
Такого рода материальные структуры, способные диссипатировать, или рассеивать, энергию, называются диссипативными. Отсюда становится ясным, что открытая система не может быть равновесной, потому что ее функционирование требует непрерывного поступления из внешней среды энергии или вещества, богатого энергией. В результате такого взаимодействия система, как указывает Шредингер, извлекает порядок из окружающей среды и тем самым вносит беспорядок в эту среду.
Очевидно, что с поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Между элементами системы возникают новые связи, которые приводят к кооперативным процессам, т. е. к коллективному поведению ее элементов. Так схематически могут быть описаны процессы самоорганизации в открытых системах.
Наглядной иллюстрацией процессов самоорганизации может служить работа лазера, с помощью которого можно получать мощные оптические излучения. Не вдаваясь в детали его функционирования, отметим, что хаотические колебательные движения составляющих его частиц благодаря поступлению энергии извне, при достаточной его "накачке," приводятся в согласованное движение. Они начинают колебаться в одинаковой фазе и вследствие этого мощность лазерного излучения многократно увеличивается. Этот пример свидетельствует, что в результате взаимодействия со средой за счет поступления дополнительной энергии прежние случайные колебания элементов такой системы, как лазер, превращаются в когерентное, согласованное коллективное движение. На этой основе возникают кооперативные процессы и происходит самоорганизация системы.
2. Энтропия в организации и учёт энтропии в управлении
Энтропия (от греч. entropia - поворот, превращение) - мера неупорядоченности больших систем. Впервые понятие "энтропия" введено в XIX в. в результате анализа работы тепловых машин, где энтропия характеризует ту часть энергии, которая рассеивается в пространстве, не совершая полезной работы (отсюда определение: энтропия - мера обесценивания энергии). Затем было установлено, что энтропия характеризует вероятность определенного состояния любой физической системы среди множества возможных ее состояний. В закрытых физических системах все самопроизвольные процессы направлены к достижению более вероятных состояний, т. е. к максимуму энтропии . В равновесном состоянии, когда этот максимум достигается, никакие направленные процессы невозможны. Отсюда возникла гипотеза о тепловой смерти Вселенной. Однако распространение на всю Вселенную законов, установленных для закрытых систем, не имеет убедительных научных оснований. В XX в. понятие " энтропия " оказалось плодотворным для исследования биосистем, а также процессов передачи и обработки информации. Эволюция в целом и развитие каждого организма происходит благодаря тому, что биосистемы, будучи открытыми, питаются энергией из окружающего мира. Но при этом биопроцессы протекают таким образом, что связанные с ними "производство энтропии " минимально. Это служит важным руководящим принципом и при разработке современных технологических процессов, при проектировании технических систем. Количественная мера информации формально совпадает с "отрицательно определенной " энтропией. Но глубокое понимание соответствия энтропии физической и информационной остается одной из кардинальных недостаточно исследованных проблем современной науки. Ее решение послужит одним из важных факторов становления нового научно-технического мышления.
Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки имеют глубокую внутреннюю связь. Например, на основе представлений об информационной энтропии можно вывести все важнейшие положения статистической физики.
Теория информации возникла для описания передачи и приёма сообщений в процессе деятельности человека. Во всех её задачах присутствуют понятия передатчика и приёмника, сигнала-сообщения, событий и их вероятностей. Существование цели передачи информации в теории информации выражается тем, что вводится понятие известного заданного события. Для него может быть определена вероятность р0 наступления до приёма сообщения и р1 после приёма.
В силу определения информации как устранённой неопределённости в достижении цели строгая (то есть математическая) формализация понятия об информации требует выразить математическим соотношением, что есть неопределённость в достижении цели. [4]
Существование неопределённости связано с участием вероятностей в осуществлении событий. Устранение неопределённости есть увеличение вероятности наступления того, что задано как цель. Поэтому вероятности должны участвовать в математической формулировке величины устранённой неопределённости.
Первая удачная попытка реализовать определение информации на такой основе осуществлена в 1928 г. Л. Хартли. Пусть возможно в данных условиях n вариантов некоторого результата. Целью является один из них. Хартли предложил характеризовать неопределённость логарифмом числа n. То есть log n является количественной мерой неопределённости. Выбор основания логарифма связан с понятием об алфавитах для описания информации. Этот выбор существенен для экономичности кодирования в технических устройствах или живых системах (сокращения потоков импульсов или аналоговых сигналов), но не меняет самого количества информации как устранённой неопределённости за счёт того, что перед логарифмом вводится безразмерный множитель, выражаемый модулем перехода между основаниями логарифмов. От него зависят названия единиц информации.
При математическом описании неопределённости (например способом Хартли) в случае равновероятных результатов можно перейти от их числа n к обратной величине - вероятности р одного из них. В терминах связи конкретно говорят о вероятности переданного сообщения р0 у приёмника до приёма сообщения. Устранение неопределённости выражается тем, что вероятность переданного сообщения у приёмника после приёма сигнала возрастает и становится р1. Тогда количественная мера s полученной информации (устранённой неопределённости) выражается логарифмом отношения вероятностей:
Оно равноправно по отношению к любому конкретному сообщению и имеет разную величину в зависимости от величин р0 и р1 для него. В частном случае, когда при передаче полностью отсутствую шумы и сбои, искажающие сигнал, вероятность р0 равна единице.
Организованность как меру организации системы можно определить по отклонению текущего состояния организации от целевого состояния — аттрактору системы, имеющему оптимальную структуру, т.е. состоянию оптимальной организации. Как определить это самое отклонение от уровня оптимальной организации? И вообще, как определить меру упорядоченности системы, уровень ее организованности или организации? Эта проблема находится в зачаточном состоянии, ибо пока не разработаны единые, достаточно удовлетворительные критерии оценки организованности сложных систем. Говоря об оптимальной организации, мы предполагаем такую организацию, в которой цели достигаются с минимальными ресурсными затратами. Как достичь такого уровня организации? Уровень организации — это абстрактная мера, это инструмент, с помощью которого можно учесть изменения, которые происходят в организации. При этом возникает вопрос о количественной оценке уровня организации. Выражение, с помощью которого формализуется уровень организации, включает индекс разнообразия элементов системы и показатель ее сложности, который соответственно зависит от количества связей в системе, т.е. показали, что уровень организованности системы определяется информационными связями.