Смекни!
smekni.com

Проявление симметрии в различных формах материи (стр. 2 из 10)

Симметрия одномерная характерна для фигур с одним особенным направлением – бордюров, лент, стержней, названия которых недвусмысленно говорят об их происхождении. Однако названия эти употребляются здесь не в обычном житейском смысле, а как родовые обозначения для определенных совокупностей явлений.

Бордюры – это фигуры без особенных точек, но сединственной осью переносов и особенной полярной плоскостью. К ним относятся обычные бордюры, применяемые для украшения проходов в метро, стен, колонн, пилястр, ребра кристаллов, побеги растений, некоторые биологические мембраны и т.д. Их симметрия исчерпывается всего семью группами, составленными из осей переносов, обычных и «скользящих» плоскостей, простых осей второго порядка.

Ленты – это фигуры без особенных точек, но с единственной осью переносов и проходящей через нее полярной или неполярной плоскостью. Бордюры, таким образом, - ленты с особенной полярной плоскостью. К ним относятся всевозможные борьеры, садовые решетки, заборы, биологические мембраны и т.д. Доказано, что в лентах может быть только 6 элементов симметрии: простая двойная ось, центр и плоскость симметрии, ось переносов, двойная винтовая ост и плоскость скользящего отражения.Таким образом для лент характерно отсутствие осей симметрии выше второго порядка. Объяснение этого простое: оси порядка выше двух вызывали бы существование нескольких транслякционных осей либо нескольких особенных плоскостей, что противоречит первоначальным условиям.

Стержни – это фигуры без особых точек и плоскостей, но с единственным особым направлением, осью стержня, с которой, кроме оси переносов, могут совпадать винтовые, зеркально-поворотные, простые поворотные оси любого порядка. Таким образом, бордюры и ленты – стержни особого рода. Примеры стержней – цепи, плетеные канаты, цепные полимерные молекулы, лучи простого и поляризованного света, силовые линии и т.д. На оси стержня можно располагать фигуры с самыми различными, но не выходящими за пределы особого направления элементами симметрии; из всех фигур с особой точкой для этой цели пригодны ,таким образом, все конечные фигуры, кроме правильных многогранников, содержащих косые оси. Размножение фигур по оси стержня производится с помощью элементов симметрии бесконечных (транслякционные и винтовые оси, плоскость скользящего отражения), а также промежуточных элементов конечных фигур (центра симметрии, поперечной оси второго порядка, зеркально-поворотной оси, поперечной плоскости симметрии). Существует бесконечное множество видов симметрии стержней, сводимых к 17 гтипам, кристаллографических групп симметрии – 75.

Симметрия двумерная присуща фигурам с двумя особенными направлениями: сетчатым орнаментам и слоям, названия которых по происхождению хотя и связаны с определенного рода бытовыми вещами, тем не менее также служат лишь родовыми понятиями для обозначения двух гораздо более широких явлений.

Сетчатый орнамент – это фигура без особенной точки, с особенной полярной плоскостью и двумя осями переносов. Примерами его являются плоские орнаменты кристаллических граней, образованные атомами, ионами и молекулами, клеточек биологических срезов и т.д. Бесконечный сетчатый орнамент применяется человеком при производстве паркетных полов, бумажных обоев, ковров и т .д.

Фигуры односторонней разетки симметрии n или n∙m (n - ось симметрии порядка n, m - плоскость, точка – знак прохождения n штук плоскостей m вдоль оси n) при их размножении в двух взаимно перпендикулярных направлениях посредством непрерывных переносов а’ и а’ приводят к односторонним плоским континуумам двоякого рода: а’: а’: n∙m; а’: а’: n (n = 1:∞)(здесь двоеточие-знак перпендикулярности). Таким образом, возможно бесконечное множество отличных от евклидовых односторонних плоскостей. Замечательно, что только при n = ∞ мы получаем вполне изотропную: 1) Обыкновенную одностороннюю плоскость симметрии а’: а’: ∞∙m,которой отвечает, например, гладкая поверхность воды, отражающая световые лучи; 2) правую и левую односторонние плоскости симметрии а’: а’: ∞, которой отвечает поверхность оптически активного раствора, вращающего плоскость линейно поляризованного света вправо или влево. Для биологических систем наиболее характерны плоскости именно двух последних родов (изомерийные).

Всем остальным видам симметрии ( n ≠ ∞) отвечают анизотропные плоскости; формуле а’: а’: 1отвечают правые и левые асимметричные в смысле симметрии размножаемых точек плоскости. Их моделями могут служить бесконечные односторонние поверхности с равномерно и беспорядочно распределенными на них асимметричными молекулами или однородные сообщества высших растений, рассмотренные с высоты птичьего полета.

От односторонних плоских континуумов легко перейти к односторонним семиконтинуума - бесконечным плоским фигурам, прерывным в одних и непрерывным в других направлениях. Примеры их - система начерченных на бумаге параллельных полос, плоский ряд карандашей и т. д. Их симметрия исчерпывается всего 7 видами. Причем если отбросить в формулах симметрии плоских односторонних семиконтинуумов символ непрерывной оси переносов, то получается 7 формул симметрии уже известных нам бордюров. Это значит, что плоские односторонние семиконтинуумы - это обыкновенные бордюры, до бесконечности вытянутые в ширину.

Слои – это фигуры без особенных точек, с особенной, не обязательно полярной плоскостью и двумя осями переносов. Таким образом, сетчатые орнаменты - лишь особого рода слои. Примерами слоев являются складчатые слои полипептидных цепей, тончайшие пленки, прозрачные двусторонние вывески и т. д.

Вывод видов симметрии двусторонних плоских континуумов осуществляется размножением фигур двусторонней розетки посредством двух взаимно перпендикулярных непрерывных переносов. Так как число групп симметрии двусторонних розеток бесконечно, то бесконечно и число групп симметрии двусторонних плоских континуумов.

Двусторонний плоский семиконтинуум можно получить посредством двух взаимно перпендикулярных переносов прямой линии, обладающей той или иной симметрией ленты. В качестве примера плоского двустороннего семиконтинуума можно взять систему тонких натянутых на плоскости равноотстоящих друг от друга проволок.

2.1.3.Континуумы, семиконтинуумы, дисконтинуумы

Теперь возвратимся к фигурам с трехмерной симметрией, но уже как к симметрическим пространствам – трехмерным дисконтинуумам, семиконтинуумам и континуумам.

Уже из философских положений: 1) пространство и время – формы существования материи,2)движение – сущность пространства и времени,3)существуют качественно различные, взаимно превращающиеся виды материи и формы ее движения – вытекают выводы о существовании качественно различных взаимно превращающихся конкретных форм пространства и времени.

Данные о континуумах, семиконтинуумах и дисконтинуумах также подтверждают эти утверждения. Они с новой и очень своеобразной стороны выявляют связь симметрии с пространством и временем.

Очевидно кристаллы в отношении их атомов,ионов и молекул можно рассматривать как дискретные трехмерные пространства – дисконтинуумы.

Помимо дискретных – анизотропных и неоднородных – пространств в теории различают еще и дискретные в одних и непрерывные в других направлениях пространства – семиконтинуумы I и II рода. Семиконтинуумы, будучи явлениями, переходными между континуумами и дисконтинуумами и одновременно их единством, с новых сторон выявляют диалектику пространства.

Пространственные (трехмерные) семиконтинуумы I рода могут быть получены трансляцией плоских континуумов вдоль перпендикуляра к ним. Число групп симметрии пространственных семиконтинуумов I рода бесконечно.Можно привести несколько примеров таких пространств в природе. Они проявляются, например, в так называемых смектических жидких кристаллах. Последние состоят из пленок толщиной в 1-2 молекулы, пленки лежат друг на друге, как листы в стопке бумаги, причем молекулы в них одной своей осью расположены параллельно друг другу, а двумя другими нет. Другие примеры-поле стоячих ультразвуковых волн в жидкости, образованное сгущениями и разряжениями последней, а также однородное световое поле, которое можно рассматривать как семиконтинуум для плоских волн.

Пространственные семиконтинуумы II рода могут быть получены переносом любых из одно- и двусторонних плоскостей, обладающих симметрией бесконечных слоев. Простейшие примеры семиконтинуумов II рода дает практика: с ними мы сталкиваемся при укладке стержней- бревен, труб и т.д.

Перейдем теперь к рассмотрению полностью непрерывных во всех трех направлениях пространств-континуумов. Пространственные континуумы могут быть получены путем трех непрерывных взаимно перпендикулярных переносов элементарных объектов, обладающих симметрией конечных фигур.

Примером симметрических пространственных континуумов являются разнообразные физические поля. Евклидово пространство – также один из примеров таких континнумов. Его можно получить непрерывным «размножением» в трех направлениях точки, обладающей симметрией обыкновенного шара( ∞/∞∙m). Пространство уже обычного электрического поля, в котором направление «вперед» (по силовым линиям) отлично от направления «назад» (против силовых линий), существенно отличается от пространства Евклида. Такой континуум можно получить непрерывным переносом в трех взаимно перпендикулярных направлениях одной точки с симметрией обыкновенного круглого конуса(∞∙m).

Как известно, в теории относительности была впервые выявлена глубокая связь двух фундаментальных континуумов – пространственного и временного. Поэтому особое значение среди различных физических континуумов придается пространственно-временному, описываемому ортохронной группой преобразований Лоренца. Она состоит из: 1) группы вращений в пространственно-временных плоскостях на чисто мнимый угол,2) группы трехмерных вращений, 3) группы пространственной инверсии.