Государственный Университет Управления
Институт Информационных Систем Управления
Специальность Информационные системы в управлении
На тему
Выполнен студенткой
Студенческий билет
Группа
Дата выполнения работы
Руководитель
Оглавление стр
I.Введение……………………………………………………………………. 3
II.Главная часть……………………………………………………………….3-32
2.1.Типы симметрии…………………………………………………….3-10
2.11.Пространственно-временные и внутренние симметрии…….3-5
2.12.Одно- и двумерная симметрии………………………………..5-7
2.13.Континуумы,семиконтинуумы,дисконтинуумы……………..7-10
2.2.Кристаллы…………………………………………………………..10-19
2.21 История познания кристаллографической симметрии………..10-14
2.22. Симметрия кристаллов………………………………………….14-19
2.3. Биосимметрия……………………………………………………….20-32
2.31. Структурная-молекулярная…………………………………….20-23
2.32. Структурная-морфологическая………………………………..23-27
2.33.Структурная-неоклассическая………………………………….27-29
2.34. Геометрическая и динамическая………………………………29-32
III.Заключение………………………………………………………………...32-33
IV.Список литературы………………………………………………………..34
В данном реферате рассмотрены основные типы симметрии: пространственно-временные, внутренние, одно- и двумерные. Проявления этих видов симметрии показаны на примере кристаллов. Также рассмотрена биосимметрия, включающая в себя одно из важных проявлений симметрии – симметрию молекул.
Симметрия – это такая особенность природы, про которую принято говорить, что она охватывает все формы движения и организации материи.Истоки понятия симметрии восходят к древним.Наиболее важным открытием древних было осознание сходства и различия правого и левого. Здесь природными образцами им служили собственное тело, а также тела животных, птиц и рыб.
Вот что написал русский исследователь, ученый ломоносовского склада, энциклопедист В.И. Вернадский в своей работе «Химическое строение биосферы Земли и ее окружения»: «…чувство симметрии и реальное стремление его выразить в быту и в жизни существовало в человечестве с палеолита или даже с эолита, то есть с амых длительных периодов в доистории человечества, который длился для палеолита около полмиллиона лет, а для эолита – миллионы лет. Это чувство и связанная с ним работа, еще резко и интенсивно меняясь, сказывались и в неолите 25 000 лет тому назад».
Можно вспомнить также великолепные памятники архитектуры глубокой древности, где пространственные закономерности проявляются особенно ярко. Это храмы древнего Вавилона и пирамиды Гизы, дворец в Ашшуре. Итак, с глубокой древности, начиная, по-видимому с неолита, человек постепенно осознал и пытался выразить в художественных образах тот факт, что в природе, кроме хаотического расположения одинаковых предметов или их частей, существуют некоторые пространственные закономерности. Они могут быть совсем простыми – последовательное повторение одного предмета, более сложными – повороты или отражения в зеркале. Для того, чтобы точно выразить эти закономерности, нужны были специальные термины. По преданию, их придумал Пифагор Регийский.
Термином «симметрия», что в буквальном смысле значит соразмерность (пропорциональность, однородность, гармония), Пифагор Регийский обозначил пространственную закономерность в расположении одинаковых частей фигуры или самих фигур. Симметрия может проявляться в перемещениях, поворотах или отражениях в зеркале.
II
1. ТИПЫ СИММЕТРИИ
2.1.1Пространственно-временные и внутренние симметрии
Среди разных типов симметрии различают пространственно-временные симметрии и внутренние симметрии.
А) Пространственно-временные симметрии являются наиболее общими симметриями природы. Их можно разделить на симметрии, связанные с непрерывными и дискретными преобразованиями.
К непрерывным преобразованиям относятся следующие.
1) Перенос(сдвиг) системы как целого в пространстве. Симметрия физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, то есть отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Изменение начала отсчета времени (сдвиг во времени); симметрия относительно этого преобразования означает эквивалентность всех моментов времени (однородность времени), благодаря которой физические законы не меняются со временем.
3) Поворот системы как целого в пространстве; симметрия физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
4) Переход к системе отсчета, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. Симметрия относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчета.
Симметрия относительно первых двух преобразований приводит к законам сохранения импульса и энергии, а симметрия относительно поворотов - к закону сохранения момента и равномерному прямолинейному движению центра инерции физической системы (в иенрциальной системе координат).
Среди дискретных пространственно-временных симметрий различают СРТ-симметрию и зеркальную симметрию.
1) Из свойств пространства и основных положений квантовой теории поля следует, что для любой частицы, обладающей каким-либо зарядом, должна существовать симметричная ей античастица(обладающая той же массой, временем жизни и спином, но с противоположным значением заряда)), а также необходимость определенной симметрии между движениями частиц и античастиц. Основной для указанной симметрии является то, что одновременное отражение всех пространственных осей (Р) и временной оси (Т)(то есть переход к зеркальной системе пространственных координат и отсчет времени в обратном напрвлении) формально сводится к реальному повороту. Поютому теория, удовлетворяющая требованиям релятивистской инвариантности должна быть инвариантна и относительно так называемого слабого отражения(РТ)
Поскольку при слабом отражении энергия и импульс частиц меняются на противоположные значения, инвариантность теории относительно слабого отражения, казалось бы, приводит к существованию физически недопустимых состояний с отрицательными энергиями. В квантовой теории поля это можно устранить, истолковав движение частиц с отрицательными энергиями как обращенное по времени, зеркально симметричное движение частиц с положительной энергией, но с противоположным значением заряда. Таким образом, необходимость существования античастиц следует из требования релятивистской инвариантности и положительности энергии. Законы природы оказываются, следовательно, симметричными относительно так называемого сильного отражения (СРТ) и зарядового сопряжения (то есть перехода от частиц к античастицам). Это утверждение составляет содержание теоремы СРТ, согласно которой для любого движения частиц может осуществляться в природе симметричное ему движение античастиц.
2)Зеркальная симметрия осуществляется в процессах, вызываемых сильными и электро-магнитными взаимодействиями, а также в системах, связанных с помощью этих взаимодействий (атомах,атомных ядрах,молекулах,кристаллах и т.д.). Наличие зеркальной симметрии означает, что для любого процесса, обусловленного сильным или электро-магнитным взаимодействием, с равной вероятностью могут осуществляться два зеркально-симметричных перехода. Это обуславливает, например, симметричность относительно плоскости, перпендикулярной спину, углового распределения квантов, испускаемых поляризованными ядрами. Зеркально-симметричные состояния отличаются друг от друга противоположными направлениями скоростей (импульсов) частиц и электрических полей и имеют одинаковые направления магнитных полей и спинов частиц.
Б) Под внутренней симметрией понимают симметрию между частицами (в квантовой теории поля – между полями) с различными внутренними квантовыми числами. Среди различных внутренних симметрий можно выделить глобальные симметрии и локальные симметрии.
(1)
Где a-произвольное число, а числа Qi фиксированы для каждого поля yi. Эта инвариантность приводит к аддитивному закону сохранения заряда åQi = const.Наряду с электрическими в качестве зарядов могут выступать и др. заряды: бариооный, лептонный, странность и т.д.
Симметрия (1) называется глобальной симметрией, если параметр преообразования a не зависит от пространственно – временных координат точки, в которой рассматривается поле.
Если параметры преобразований для глобальных симметрий можно расссматривать как произвольные функции пространственно-временных координат, то говорят, что соответствующие симметрии выполняются глобально.
2.1.2.Одно- и двумерная симметрии
Изучение симметрии кристаллических ребер и рядов ионов,атомов и молекул, слагающих кристалл, привело к необходимости вывода всех одномерных групп симметрии. Все операции одномерной симметрии оставляют инвариантной одну особенную прямую. Изучение же симметрии граней и молекулярных, атомных, ионных слоев кристаллов привело к необходимости вывода всех двумерных групп симметрии. В последних операции симметрии оставляют инвариантной одну особенную плоскость.