Смекни!
smekni.com

Анализ антонимических отношений в подъязыке математики английского языка (стр. 14 из 16)

А В А<=>В
ИИЛЛ ИЛИЛ ИЛЛИ

Попробуем записывать сложные высказывания схематически с помощью обозначения логических связок:

1. "Быть иль не быть - вот в чем вопрос." (Шекспир) А V ⌐A <=> В

2. "Если хочешь быть красивым, поступи в гусары." (К. Прутков) А => В

Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют БУЛЕВОЙ ФУНКЦИЕЙ СУЖДЕНИЙ (F(A,B)). Рассмотрим примеры построения таблиц истинности для сложных суждений.

1. А <=> А (закон "отрицания отрицания": Отрицание отрицания суждения тождественно самому суждению.)

А А А A<=>A
И Л И И
Л И Л И

Если значение истинности булевой функции всегда истина, то эта функция выражает ЗАКОН.

2. ((А => В) & ⌐ В) => ⌐A (доказательство "от противного": Если А влечет В, но В не верно, то не верно и А.)

A B A=>B B (A=>B)&B A ((A=>B)&B)=>A
ИИЛЛ ИЛИЛ ИЛИИ ЛИЛИ ЛЛЛИ ЛЛИИ ИИИИ

Вы знаете, что ТЕОРЕМА - это предложение, истинность которого доказывается на основе аксиом или ранее доказанных теорем. Теоремы часто формулируются в виде импликаций. Импликативная структура наиболее удобна для выделения условия и заключения теоремы (того, что дано, и того, что необходимо доказать). Если импликация А => В выражает некоторую теорему, то основание импликации А выражает условие, а следствие В - заключение теоремы. Условие или заключение в свою очередь может не быть элементарным высказыванием, а иметь определенную логическую структуру, чаще всего конъюнктивную или дизъюнктивную. Рассмотрим примеры:

1. Теорема "Если диагонали параллелограмма взаимно перпендикулярны или делят его углы пополам, то этот параллелограмм - ромб" имеет структуру А V В => C, где А - "диагонали параллелограмма взаимно перпендикулярны"; В - "(диагонали параллелограмма) делят его углы пополам"; С - "этот параллелограмм - ромб".

2. Теорема о средней линии трапеции имеет структуру: А => В & С, где А - "четырехугольник - трапеция"; В - "его средняя линия параллельна основаниям"; С - "(его средняя линия) равна полусумме оснований".

Часто в формулировках теорем используется выражение "необходимо и достаточно" (ПРИЗНАК). В логике это выражение соответствует эквиваленции, которая, как известно, представима в виде конъюнкции двух импликаций. Одна из этих импликаций выражает теорему, доказывающую НЕОБХОДИМОСТЬ признака, другая выражает теорему, доказывающую ДОСТАТОЧНОСТЬ признака. Например, признак перпендикулярности двух плоскостей:

"Для того чтобы две плоскости были перпендикулярны, НЕОБХОДИМО и ДОСТАТОЧНО, чтобы одна из них проходила через прямую, перпендикулярную к другой", может быть сформулирован и так: "Две плоскости перпендикулярны, ЕСЛИ И ТОЛЬКО ЕСЛИ одна из них проходит через прямую, перпендикулярную к другой":


А <=> В или А => B & B =>A.

Для преобразования суждений важны следующие законы:

1) А <=> A закон двойного отрицания;

2) (A&B) <=> A V B законы де Моргана;

3) (AVB) <=> A & B

4) A => B <=> A V B замена импликации.

Для построения высказываний о всеобщности и о существовании вводятся операции связывания кванторами (или "навешивания кванторов").

Выражение "для всех Х" ("для любого Х") называется КВАНТОРОМ ВСЕОБЩНОСТИ и обозначается символом: Х.

Выражение "существует Х такое, что..." называется КВАНТОРОМ СУЩЕСТВОВАНИЯ и обозначается символом: Х.

Выражение "существует точно одно Х такое, что..." называется КВАНТОРОМ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ и обозначается символом: ! Х.

Пример: Высказывание (суждение) "Ты любишь потому, что ты любишь. Не существует причин, чтобы любить." (Экзюпери) можно записать в виде:

А => А. В.

где A - "ты любишь", В - "причины любви".

Исчисление предикатов расширяет язык исчисления высказываний так, что мир оказывается, состоящим из объектов, отношений и свойств.

Логику предикатов можно рассматривать как компоненту естественного языка, имеющую в соответствии со сложностью синтаксических правил иерархическую структуру, которую образуют предикаты первого порядка, второго и так далее. Для логики предикатов определено множество значений и на его основе определены слова как последовательности знаков. Функцией языка предикатов является задание слов двух типов:

1. Слова, задающие сущности изучаемого мира.

2. Слова, задающие атрибуты / свойства этих сущностей, а также их поведение и отношения.

Первый тип слов называется термами, второй – предикатами.

Некие сущности и переменные определяются упорядоченными последовательностями конечной длины из букв и символов, исключая зарезервированные. Константы и переменные определяют отдельные объекты рассматриваемого мира. Последовательность из nконстант или переменных (1 £n< ¥), заключенная в круглые скобки, следующие за символом функции, имя которой задано некоторой конечной последовательностью букв, называется функцией.

Например, функция f(x, y) принимает некоторые значения, которые определяются значениями констант и переменных (аргументов функции), содержащимися под знаком функции. Эти значения, так же как и аргументы, являются некоторыми сущностями рассматриваемого мира. Поэтому все они объединяются общим названием терм (константы, переменные, функции).

Атомарным предикатом (атомом) называется последовательность из n(1 £n<¥) термов, заключенных в круглые скобки, следующие за предикатным символом, имя которого выражается конечной последовательностью букв. Предикат принимает одно из двух значений trueили falseв соответствии со значениями, входящих в него термов.

Предикат @ Нераспространенное простое предложение

Из атомов с помощью, выполняющих функции союзов, символов составляются логические формулы, соответствующие сложным предложениям. В логике предикатов используются два класса символов. Первый класс соответствует союзам и включает операции дизъюнкции, конъюнкции, отрицания, импликации и эквивалентности.

Символы первого класса позволяют определять новый составной предикат, используя уже определенные предикаты. Различие между символами первого класса лежит в правилах, в соответствии с которыми определяются значения истинности или ложности составного предиката в зависимости от истинности или ложности элементарных предикатов. Символы ® и », вообще говоря избыточны так, как:

но используются т.к. ® эквивалентен фразе «Если А, то В», а » - «А и В эквивалентны».

В качестве символов второго класса используются " и $. Эти символы называются кванторами общности и существования, соответственно. Переменная, которая квантифицирована, т.е. к ней применен один из кванторов

, называется связанной. Квантор общности является обобщением, аналогом конъюнкции, а квантор существования – обобщением, аналогом дизъюнкции на произвольное, не обязательно конечное множество.

Действительно, пусть

Тогда для любого предиката Uвыполняется:

Аналогом законов Де Моргана для кванторов являются:

Таким образом, чтобы найти отрицание выражения, начинающегося с кванторов, надо каждый квантор заменить на его двойственный и перенести знак отрицания за кванторы. Отсюда:

Функция, двойственная к данной, есть функция, в которой взяты отрицания от всех операций и от всех операндов, и обозначается

.

Пример:

.

Общезначимое равенство между функциями влечёт общезначимое равенство между двойственными функциями. Из этого следует, что принцип двойственности вдвое сокращает время доказательства теорем: вместе с каждой теоремой мы автоматически доказываем двойственную ей.

3.4 Специфика антонимии в математическом тексте

В связи с информацией двух предыдущих подразделов, антонимов в математическом тексте гораздо меньше, чем в художественном тексте и их основная функция – это построение отрицания. Причем выражение отрицания проявляется не только на уровне слов, но и на уровне предложений и даже целых абзацев. Например, антонимы на уровне слов: рациональный – иррациональный, алгебраический – трансцендентный, и т.д. Антонимы, на уровне предложений: Функция f(x), определенная на множествеE, называется ограниченной, если существует число M, что для любого xиз Eсправедливо

. – Функция f(x), определенная на множествеE, называется неограниченной, если для любого положительного числа M, существует xиз Eтакой, что
. Антонимы на уровне абзацев обычно представляют собой прямую и противоположную теоремы. Прямая и противоположная теоремы, хоть и являются антонимичными, но они абсолютно равносильны между собой, поэтому в данном случае, исходя из смысла теорем, имеет смысл говорить о синонимии антонимов.