Министерство образования Республики Беларусь
Учреждение образования
Гомельский государственный университет
имени Франциска Скорины
Институт повышения квалификации и переподготовки кадров
Кафедра социально-гуманитарных дисциплин
АНАЛИЗ АНТОНИМИЧЕСКИХ ОТНОШЕНИЙ В ПОДЪЯЗЫКЕ МАТЕМАТИКИ АНГЛИЙСКОГО ЯЗЫКА
Дипломная работа
Гомель 2008
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 КАТЕГОРИЯ ПРОТИВОПОЛОЖНОСТИ И АНТОНИМЫ КАК СРЕДСТВО ЕЕ ВЫРАЖЕНИЯ
1.1 Трактовка значения «противоположность» с точки зрения философии и логики
1.2 Общая характеристика антонимов
1.3 Классификация антонимов
1.4 Стилистические функции антонимов
1.5 Образование антонимов
1.6 Условия актуализации антонимических отношений
2 ОСОБЕННОСТИ ПОДЪЯЗЫКА МАТЕМАТИКИ
2.1 О развитии подъязыка математики как подсистемы общенационального языка
2.2 Стиль математического текста
2.3 Лексические особенности
2.4 Синтаксис, грамматика и морфология научных текстов
2.5 Экспрессивность и образность в научном стиле английского языка
3 АНТОНИМИЯ В МАТЕМАТИЧЕСКОМ ТЕКСТЕ
3.1 «Противоположность» с точки зрения математики
3.2 Категория «противоположность» в различных логических системах
3.3 Построение противоположных высказываний к высказываниям с составным логическим смыслом
3.4 Специфика антонимии в математическом тексте
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Данная дипломная работа посвящена анализу антонимических отношений в подъязыке математики английского языка. В дипломной работе будем рассматривать антонимию, как средство выражения категории противоположности.
Английский язык имеет богатый словарный запас, который мы используем, когда описываем свои чувства, предметы и явления окружающего нас мира, излагаем свои требования и пытаемся что-то доказать. Для этого в своей речи мы используем антонимы и конверсивы, которые являются лексическими способами выражения категории “противоположности” в языке.
Проблема языкового выражения категории противоположности поднималась в современной лингвистической науке в связи с понятием языковой антонимии (Копылова 1995; Косякова 1981; Львов 1985; Миллер 1981; Новиков 1974 и др.).
Об антонимии, которая считается языковой универсалией (Новиков 1985; Джон Лайонз 1999), написано большое количество работ, посвященных описанию антонимии разных частей речи русского и английского языков (имя существительное: Морозова 1974; Савицкая 1977; имя прилагательное: Максимов 1958; Джафарова 1974; Маидова 1980; глагол: Эдельштейн 1972; Косякова 1983); исследованию словообразовательного и структурно-типологического аспекта антонимии (Маргарян 1988); выявлению типов семантических связей (Лебедева 1977); определению речевых противопоставлений (Комиссаров 1962; Соколова 1977); исследованию фразеологической антонимии (Алехина 1968; Стишкова 1976; Эмирова 1972; Бяшимова 1989). Список англоязычных авторов, занимавшихся изучением антонимии можно найти в [1], список испанских и хорватских авторов можно найти в [2].
Антонимия изучается не только в языкознании, но и в других областях науки. Например, в социологии метод семантического дифференциала активно использует понятие антонимии [3–8]; в переводоведении (антонимичный перевод) [9–10]; в области искусственного интеллекта: явление конверсивов и антонимии отображено в статье А.А. Котова “Модель эмоционального речевого воздействия для виртуального агента ролевой компьютерной игры” в трудах международной конференции «Диалог 2006». Явление градуальных антонимов широко используется в диссертации К.А. Гиляровой, “Языковая концептуализация формы физических объектов”, работах О.Ю. Шиманаевой, “Точные и приблизительные оценки размеров предметов в русском языке”, Е.Г. Соколовой, “Принципы построения семантических аннотаций содержания изображений”, опубликованные в трудах конференции Диалог 2006.
Антонимия, как средство выражения противоположности, в математическом тексте будет полезна для реализации программ автоматического доказательства теорем [11–16]. Здесь можно выделить два значения. 1) перевод с естественного языка на язык программы; 2) перевод с языка программы на естественный язык.
Целью исследования является изучение особенностей явления антонимии в математическом тексте.
Цель данной работы обусловила решение следующих задач:
1. раскрыть понятие «антоним»;
2. описать семантические особенности математического текста;
3. проанализировать виды антонимов в математическом тексте;
4. выявить основные способы образования антонимичных отношений в математическом тексте.
Объектом исследования в данной работе являются математические тексты из различных областей математики.
Предметом данного исследования является антонимия в математических текстах.
Работа состоит из введения, трех глав и заключения и снабжена списком используемой литературы.
Во введении обосновывается актуальность темы исследования, её теоретическая и практическая значимость, определяются объект, предмет, цель и задачи исследования.
Первая глава дипломной работы посвящена рассмотрению общего понятия антонимии, в ней приведены классификации антонимов, рассмотрены стилистические функции антонимов и способы их образования.
Вторая глава посвящена особенностям подъязыка математики, процессам его становления и его стилистическим особенностям, влияющим на антонимию в математическом тексте.
Третья глава рассматривает отношения антонимии, присущие непосредственно подъязыку математики, проанализированы функции антонимов в математическом тексте и их значение для математики, указаны способы образования сложных антонимичных отношений на уровне предложений и абзацев.
В заключении подводятся итоги проведённого исследования и формулируются краткие выводы.
Достижение цели исследования и решение поставленных задач обусловливает необходимость использования комплекса общенаучных теоретических (теоретический анализ, конкретизация, моделирование) и эмпирических (изучение специальной литературы, инструкций, словарей) методов исследования, что является его методологической основой.
Осуществленное исследование имеет несомненную теоретическую и практическую значимость. Полученные результаты могут найти применение в теории семантики английского языка и в областях искусственного интеллекта.
Термин “противоположность” широко используется в различных областях науки. Так в философии под термином “ противоположность” понимают категорию, выражающую одну из степеней развития противоречия [17, с. 371]. Логика трактует термин “противоположность” по-своему. “Противоположность” – категория, выражающая одну из сторон диалектического противоречия, которое включает в себя взаимодействие между взаимоисключающими, но при этом взаимообуславливающим и взаимопроникающим друг друга противоположностями внутри единого объекта и его состоянии или же понятии, высказываний, теорий [18, с. 486] .
В языке же “противоположность” находит отражение в антонимии и конверсивах. Антонимия – это тип семантических отношений лексических единиц, имеющих противоположное значение (антонимы) [19, с. 35]. Будучи категорией лексико-семантической системы языка, антонимия представляет собой одну из реалий языковых: она свойственна всем языкам, а ее единицы обнаруживают принципиально общую структуру противоположных значений и большое сходство в структурной и семантической классификации антонимов.
Конверсия (от латинского conversion— изменение, превращения) в лексике – это способ выражения субъектно-объектных отношений в эквивалентных по смыслу предложениях [19, с. 234–235].
Различают два вида противоположности: контрарная (от латинского contrarius— противоположный) и комплементарная (от латинского complementum–дополнение) [20, с. 9–12].
XZY
Контрарная противоположность (Рис. 1) выражается видовыми понятиями “X” и “Y”, между которыми возможно третье, среднее “Z”, и которые не только отрицают друг друга, но и характеризуются своим, противоположным содержанием, например: молодой – средних лет, пожилой – старый.
Рис. 2
Комплементарная противоположность (Рис. 2) представлена видовыми понятиями “X” и “Y”, дополняющими друг друга до родового так, что между ними невозможно никакое третье, среднее понятие, например: истинный – ложный. Родовое понятие здесь исчерпывается двумя видовыми, поэтому отрицание одного из них дает содержание другого: неистинный – значит ложный и наоборот. Каждое из таких понятий характеризуется также своим положительным содержанием в отличие от противоречащих понятий типа: молодой – немолодой (то есть средних лет, пожилой, старый), где второе видовое понятие негативно по своему характеру и неопределенное.
В силу этого такое противопоставление не образует противоположности и не является логической основой антонимии. Чтобы выразить истинную противоположность, второй член противопоставления должен быть здесь конкретизирован, обозначен более определенно (немолодой – старый): “в нем определенность необходимо должна определять себя точнее, должна стать определенностью в себе, противоположением” [21, с. 64].
Противоположные видовые понятия, в отличие от противоречащих, определяют предел проявления качества, свойства, действия, определяемых тем или иным родовым понятием, они и образуют логическую модель антонимии.