Мир Знаний

Биохимические реакторы (стр. 3 из 4)

Достаточно малый размер пузырьков по всей высоте колонны обеспечивают ситчатые тарелки и/или перемешивающие или другие внутренние устройства, разрушающие все воздушные пробки и таким образом способствующие сохранению высокой величины площади контакта между газовой и жидкой фазами.

На рисунке 12 представлена схема, положенная в основу математической модели башенного реактора с рециркуляционным устройством и с параллельными потоками газовой и жидкой фаз (биореактор эрлифтного типа). В собственно башне реактора (на рисунке изображенной справа) в одном направлении движутся потоки жидкой и газовой фаз. В верхней части башни газ отделяется, а жидкая фаза через рециркуляционное устройство (изображенное слева) возвращается в нижнуюю часть реактора, где расположено барботирующее устройство.

2.3. Биореакторы с псевдоожиженным слоем катализатора

Процессы в псеводоожиженном слое катализатора обычно осуществляют в реакторах колонного типа, рассмотренных в предыдущем разделе, поэтому если такие процессы включают подачу или отвод газа, то расчет газовых потоков и массопереноса должен выполняться так, как было только что описано. В то же время в реакторах с псевдоожиженным слоем катализатора появляется еще одна фаза.

В башенном реактрое с псевдоожиженным слоем катализатора поток жидкости направлен снизу вверх по высокому вертикальному цилиндру. Частицы нерастворимого биокатализатора (скопления микроорганизмов, частицы иммобилизованных ферментов или клеток) суспендируются, увлекаемые восходящим потоком жидкости. Вовлеченные в этот поток частицы катализатора в верхней расширяющейся части реактора прекращают подъем и затем вновь возвращаются в башню. Если тщательно подобрать режим работы реактора с учетом характеристик организма, то биокатализатор удается удерживать в реакторе, несмотря на то, что через реактор неперерывно протекает среда.

Например, в башенных ферментерах, использующихся в непрерывных процессах пивоварения, создается определенный градиент концентрации дрожжевых клеток по высоте башни, причем бвлизи от дна реактора концентрация микроорганизмов может достигать 35%, а в верхней части башни этот парамент снижается до 5-10%. Более того, в зависимости от высоты в реакторе постепенно изменяются и характеристики среды. Так, вблизи зоны поступления исходных питательных вещств превращениям подвергаются прежде всего легко ферментируемые сахара, что приводит к снижению плотности среды. В средней и верхней зонах башни скопления дрожжевых клеток трансформируют мальтотриозу и отчасти мальтозу. Такая картина, характеризующаяся быстрыми реакциями в начальной стадии процесса и последующими более медленными реакциями с участием менее "удобных" субстратов, согласуется с экспериментальными данными, предствленными на рисунке 13.

Рудиментарная модель реактора с псеводоожиженным слоем катализатора может быть разработана, если допустить, во-первых, что частицы биологического катализатора (хлопья скоплений микроорганизмов или частицы иммобилизованного фермента) однородны по форме и размерам; во-вторых, что плотность жидкой фазы является функцией концентрации субстрата; в-третьих, что движение жидкой фазы в реакторе осуществляется в режиме полного вытеснения; в-четвертых, что реакция утилизации субстрата имеет первый порядок по биомассе, но нулевой порядок по субстрату; в-пятых, что числа Рейнольдса частиц катализатора, рассчитанные по их конечной скорости, достаточно малы, так что движение частицы может быть описано законом Стокса. Четвертое и пятое допущение достаточно обосновнны во многих ситуациях; первое, второе и третье в ряде случаев так же могут быть оправданы.

При указанных допущениях скорость утилизации субстрата можно описать уравнением типа:

d(su)/dz = – kx,

или

u ds/dz + s du/dz = – kx (4)

Если движение частиц (клеток) описывается законом Стокса, то зависимость концентрации суспендированной биомассы от скорости потока жидкости в псевдоожиженном слое должна подчиняться уравнению:

x = r0 [1 – (u/ut)]1/4.65 (5)

Здесь r0 – плотность культуры микроорганизмов (масса сухого клеточного вещества в единице объема), а ut – конечная скорость сферы в стоксовом потоке.

Любое именением плотности жидкой фазы мало сказывается на величине u. Если и не зависит от положения в реакторе, то уравнение (4) можно проинтегрировать непосредственно и таким путем получить

sc = sf – kr0 [1 – (u/uf)1/4.65]*L/u (6)

Здесь L – высота башни; при выводе этого уравнения принималось, что х определяесят уравнением (5). Отражаемая уравнением (6) линейная зависимость концентрации субстарата от среднего времени реакции L/u (если допустить, что r так же линейно зависит от s) действительно наблюдается по меньшей мере на некоторых участках соответствующей кривой (рис. 13).

Основным недостатком этой модели является обезличивание субстратов. Действительно, в обсуждаемой модели различные сахара, утилизируемые в ходе анаэробного спиртового брожения, сгруппированы в некий гипотетический единый и средний субстрат. При таком подходе исключается возможность учета эффекта глюкозы, играющего очень важную роль в процессах пивоварения в башенных ферментерах непрерывного действия.

Что касается потока жидкой фазы через псеводоожиженный слой, то обычно желательно поддерживать режим полного вытеснения. Нестабильная структура течений в слое в ряде случаев может вызывать существенное обратное смешение, нарушающее ход процесса и нормальную работу реактора. Вероятность обратного смешения возрастает при уменьшении диаметра колонны и снижении скорости потока жидкой фазы. В то же время в биореакторах с псевдоожиженным слоем катализатора в силу малых размеров его частиц и небольшого различия между плотностями жидкой фазы и катализатора приходится ограничиваться относительно невысокими линейными скоростями потока жидкости. Кроме того, при понижении скорости потока жидкой фазы повышается концентрация катализатора в реакторе. Показано, что введение в биореактор с псевдоожиженным слоем катализатора статических элементов перемешивания может значительно улучшить характеристики расширения слоя и снизить нежелательное обратное смешение.

Поскольку реакторы с неподвижным слоем катализатора в общем случае ближе к реакторам полного вытеснения, может возникнуть вопрос о целесообразности и преимуществах биореакторов с псевдоожиженным слоем катализатора. Прежде всего преимущества таких реакторов очень ярко проявляются при необходимости контакта реакционной смеси с газами. В реакторах с неподвижным слоем катализатора довольно трудно добиться эффективной аэрации (особенно при большом объеме реактора), а если в ходе процесса образуются газообразные продукты, например, углекислый газ, то нелегко и предупредить избыточное накопление газа в верхней части реактора с неподвижным слоем. Реактор с псевдоожиженным слоем катализатора обеспечивает режимы течений, в большей степени способствующие межфазному контакту в системе газ–жидкость–твердое тело. Хороший контакт между газовой и жидкой фазами, с одной стороны, и биокатализаторо, с другой, обеспечивают так же реакторы со струйным течением жидкости.


2.4. Реакторы с неподвижным слоем катализатора и со струйным течением жидкости

Содержимое реакторов с неподвижным слоем катализатора и струйным течением жидкости представляет собой трехфазную систему, состоящую из неподвижного слоя нерастворимого катализатора, а так же подвижной газовой и жидкой фаз. Поступающая в реактор газовая и жидкая фазы содержат по одному или несколько реагентов, поэтому скорость биохимической реакции зависти зависит от характеристик контакта между жидкостью, в которую переносится ограниченно растворимый реагент из газовой фазы, и поверхностью катализатора. На работу таких реакторов в существенной степени влияет физическое состояние газожидкостного потока, проходящего через неподвижный слой катализатора, и связанные с этим процессы массопереноса.

К числу важных характеристик таких реакторов и содержащихся в них систем относятся площадь поверхности катализатора, эффективность смачивания катализатора подвижной жидкой фазой, структура течений газожидкостной смеси, массопереноса ограниченно растворимых реагентов из газовой в жидкую фазу, массопереноса реагентов к поверхности катализатора, а в случае пористого или проницаемого катализатора – диффузия реагентов к каталитическим центрам, находящимся внутри частиц катализатора.

Одной из первых областей применения биореакторов с насадкой и струйным течением жидкости, сохраняющей свое значение и в настоящее время, является обработка сточных вод с помощью биологических капельных фильтров. Вращающееся распределительное устройство разбрызгивает поток жидких отходов по кольцевому слою гравия, на котором находится пленка микроорганизмов. Жидкость стекает через неподвижный слой в почти ламинарном режиме, а воздух поднимается через слой катализатора благодаря естественной конвекции за счет выделяющейся в микробиологическом процессе теплоты. Аналогичный принцип лежит в основе традиционного способоа производства винного уксуса (биологическое окисление этанола до уксусной кислоты), где применяются прямоугольные колонны с насадкой из древесной щепы. Для ламинарного течения жидкой фазы и упрощенной геометрии слоя, например для плоского слоя, можно создать детальную математическую модель, описывающую характеристики потоков и процессов переноса, и решить соответствующие уравнения.

В промышленности встечаются и другие конструкции реакторов со струйным течением жидкости и неподвижным слоем катализатора, в частности такие, в которых параллельные потоки газовой и жидкой фаз движутся сверху вниз или снизу вверх. При изучении режима работы таких реакторов необходимо помнить, что в зависимости от относительных скоростей газовых и жидкостных потоков (и в некоторой степени от других свойств газожидкостной системы) можно получить самые разные дисперсные системы, начиная от непрерывной жидкой фазы с диспергированными в ней газовыми пузырьками и заканчивая непрерывной газовой фазой с диспергированными каплями жидкости (туманом) (рис. 14). На этом рисунке выделена и зона нестабильности потока, когда через реактор непрерывно проходят газ и жидкость в виде крупных газовых пузырей и жидких поршней соответственно. Участки графика, обозначенные как "пилотная установка" и "промышленная установка", заимствованы из опытных данных, полученных при изучении процессов перереботки нефти. В некоторых режимах работы биореактора применяются низкие скорости потока воздуха. Так, в процессах биологической обработки отходов на капельных фильтрах аэрация осуществляется за счет естественной конвекции, обусловленной небольшой экзотермичностью происходящих реакций.