Смекни!
smekni.com

Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека (стр. 3 из 4)

Таким образом здоровый организм находится в равновесии с окружающей средой.

Транспортные системы в организме человека.

Метаболические процессы, протекающие во всех клетках тела, требуют непрерывного притока питательных веществ и кислорода и непрерывного удаления продуктов обмена. У некоторых видов животных транспортная система, кроме того, служит для переноса гормонов из эндокринных желез в те органы, на которые они воздействуют, а также участвует в регуляции температуры тела.

У человека система кровообращения слагается из кровеносных сосудов, наполняющей их крови и сердца, приводящего кровь в движение. Кровь состоит из жидкой плазмы и взвешенных в ней кровяных клеток. В большинстве случаев переносимый кровью кислород не просто растворен в плазме, а соединен с тем или иным гемопротеидом, это гемоглобин, находящийся в эритроцитах. Система кровеносных сосудов у человека состоит из артерий, вен и капилляров.

Артерии и вены – это крупные сосуды, которые отличаются друг от друга направлением тока крови и строением стенок. Артерии несут кровь от сердца к тканям, а вены возвращают ее от тканей к сердцу. Капилляры –микроскопические сосуды, которые находятся в тканях и соединяют артерии с венами. Тонкие стенки капилляров состоят из одного слоя клеток эндотелия, через который различные вещества могут переходить из крови в ткани и обратно. Кровь не вступает в прямое соприкосновение с клетками организма, они омываются тканевой жидкостью. Для того чтобы достигнуть клеток, вещества должны перейти из крови через стенку капилляра и через пространство, заполненное тканевой жидкостью. Стенка капилляра имеет крупные поры, чем плазматическая мембрана клеток, через них легко диффундирует глюкоза, аминокислоты и мочевина, а также ионы натрия, хлора и др.

Помимо кровеносной системы имеется еще одна группа сосудов, образующих лимфатическую систему. Лимфатические сосуды образуют вспомогательную систему для возврата жидкости из тканевых пространств в систему кровообращения. Лимфатические капилляры весьма проницаемы и через стенку вместе с тканевой жидкостью внутрь легко проникают белковые молекулы и другие крупные частицы.

Переносимые кровью вещества, могут быть просто растворены в плазме, связаны с каким-либо из белков плазмы или же присоединены к гемоглобину, находящемуся в эритроцитах.

Небольшое количество кислорода и углекислоты растворены в плазме. Неорганические ионы (хлор, бикарбонат, фосфат) и катионы ( натрий, калий, магний, кальций) переносятся в плазме в растворе. Глюкоза, аминокислоты и органические кислоты (молочная, лимонная) находятся в растворе, так же как и разнообразные отходы метаболизма (мочевина, мочевая кислота, аммиак, креатинин) и очень малые количества витаминов. Многие вещества, переносимые плазмой, соединены с белками. Свободные жирные кислоты переносятся кровью в виде комплексов с сывороточным альбумином. Триглицериды совершают свой путь из кишечника в печень и жировую ткань в форме хиломикронов – капелек жира, стабилизированных тонкой оболочкой из белков, фосфолипидов и холестерина. Гормоны передней и задней долей гипофиза переносятся плазмой крови в растворенном состоянии. Тироксин связан либо со специфическим белком тиреоглобулином, либо с альбумином. Инсулин, находящийся в плазме связан с глобулинами. Кортизол – с транскортином. Кислород и углекислый газ переносит гемоглобин.

Исключительно большое значение имеет способность клеток поглощать питательные вещества и выделять различные соединения.

Термин “мембрана” используется вот уже более ста лет для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой – полупроницаемой перегородкой через которую проходить молекулы воды некоторые из растворенных в ней веществ.

Мембраны более чем на 95% состоят из липидов и белков. Фермент натрий-калий-АТФ-аза связан с плазматической мембраной. Она обнаружена в клетках всех органов животных (нет в эритроцитах). Кальциевая АТФ-аза имеется в кишечнике и мышцах. Ионы железа переносит внутрь клетки микобактин, где эти ионы при участии НАДН восстанавливаются до двухвалентного железа. Ионофоры – это ряд соединений, которые сами могут и не участвовать в транспорте, но делают мембрану проницаемой для ионов. Ионофоры подразделяют на пептиды, депсипептиды, макротетралиды. Пиноцитоз – морфологически это перемещение пузырьков – капелек жидкости, окруженных липидами, либо из цитоплазмы наружу (экзоцитоз), либо из среды в клетку (эндоцитоз).

Небольшие нейтральные молекулы могут проникать через мембраны просто за счет обычной диффузии. Скорость диффузии вещества определяется его растворимостью в мембране, коэффициентом диффузии в мембране и разностью концентрации вещества снаружи и внутри клетки. Эту разность называют градиентом концентрации.

При транспорте заряженных частиц существенное влияние на процесс диффузии оказывает также разность электрических потенциалов, возникающих в результате накопления в клетке избытка отрицательно заряженных ионов.

Путем обычной диффузии в клетки проникают вода, двуокись углерода, кислород и молекулы анестезирующих веществ. Значительно более широко распространен процесс облегченной диффузии. Подобно обычной диффузии, облегченная диффузия зависит от градиента концентрации. Для облегченной диффузии характерен эффект насыщения, который заключается в том, что по мере увеличения концентрации диффундирующего вещества скорость потока вещества через мембрану стремится к некоторому максимуму. Очевидно, при облегченной диффузии, вещество соединяется с подвижным переносчиком (чаще всего белком). Переносчик далее диффундирует на короткое расстояние к противоположной стороне мембраны, где освобождается от связанной с ним молекулы или иона.

Наибольший интерес представляет активный транспорт, при котором вещество переносится через мембрану против градиента концентрации, т.е. из области с более низкой концентрацией в область с более высокой концентрацией. Этот процесс сопровождается увеличением свободной энергии и это обстоятельство делает необходимым сопряжение активного транспорта с какой-нибудь самопроизвольно протекающей экзергонической реакцией.

Такое сопряжение может осуществляться по меньшей мере двумя путями.

При первичном активном транспорте имеет место непосредственное сопряжение с реакциями типа гидролиза АТФ и “накачивания” растворенного вещества через мембрану, тогда как при вторичном активном транспорте используется энергия электрохимического градиента, возникающего для другого растворенного вещества. Во втором случае одно растворенное вещество “накачивается” против градиента концентрации, а затем второе переносится через мембрану в результате обмена с первым.

Еще одна разновидность активного транспорта известна под названием групповая транслокация. В этом процессе транспортируемое вещество сначала подвергается ковалентной модификации и образующийся при этом продукт проникает в клетку. Процессы транспорта , будь то облегченный или активный транспорт, представляется весьма сложными и протекают с участием нескольких мембранных белков. Иногда для описания транспортной системы используют термин пермеаза. В последнее время достигнуты значительные успехи в выделении связывающих белков, которые принято считать компонентами пермеазных систем.

Большая часть выделенных белков принадлежит к системам активного транспорта и их функция в процессах переноса до сих пор окончательно не установлена.

Рассмотрим более подробно активный перенос через мембраны. В клеточных мембранах имеются системы переноса, способные ускорять прохождение биологически важных растворенных веществ. Такие системы обладают субстратной специфичностью и способностью насыщаться субстратом. Они подвержены конкурентному и неконкурентному ингибированию. Вероятно, субстрат образует со специфической молекулой переносчиком в мембране комплекс, аналогичный фермент-субстратному комплексу. Системы пассивного переноса перемещают определенные растворенные вещества в направлении градиента концентрации, они не требуют затраты метаболической энергии. Другие мембранные системы переноса ускоряют обменную диффузию или эквивалентный обмен растворенных молекул через мембрану. Системы активного переноса ускоряют перемещение специфических растворенных веществ против градиента концентрации, они зависят от АТФ или других носителей метаболической энергии. Одной из самых распространенных систем активного переноса у высших организмов является натрий-калий-АТФаза, которая выводит ионы натрия из клетки и обеспечивает сопряженное накопление ионов калия в клетке. Это АТФ-азная система, локализованная в клеточной мембране, действует на внутриклеточный магний АТФ и стимулируется ионами натрия изнутри и калия снаружи. В эритроцитах при гидролизе одной молекулы АТФ до АДФ и фосфата выводится 3 иона калия. Процесс протекает в 2 стадии. Для осуществления необходимы ионы натрия, ингибируется он ионами кальция.