В результате проведенных электронно-микроскопических исследований установлено, что взаимодействие ПАВ с поверхностью грамположительной бактериальной клетки можно разделить на несколько этапов.
1. Адсорбция ПАВ, по-видимому, первоначально происходит на участках, где его сродство с амфифильным фрагментом клеточной стенки является наибольшим. Затем следует взаимодействие молекул (или мицелл) ПАВ с белками, образующими поры, (поринами), что приводит к существенным структурным изменениям в порах бактериальной стенки. В результате нарушается ее проницаемость, а вследствие этого – сокращается цитоплазма.
2. Солюбилизирующая способность ПАВ в дальнейшем проявляется в виде частичной дезинтеграции клеточной стенки, позволяющей молекулам детергента проникать глубже в клетку и непосредственно контактировать с цитоплазматической мембраной. Обнаружены различия в дезинтегрирующем действии тритона Х-100 на делящиеся и покоящиеся клетки. В первом случае дезинтеграция клеточной стенки всегда происходит на участке перегородки, растущей к центру клетки, причем процесс активируется в результате перестроек в клеточной стенке, наступающих после действия ПАВ. Во втором случае клеточная стенка фрагментируется по участкам, которые, вероятно, содержат белковые компоненты.
3. На заключительной стадии действия ПАВ наблюдается «утечка» цитоплазматического содержимого из оставшегося клеточного каркаса, что позволяет предположить наличие в клеточных экстрактах соединений, синтезируемых данными микроорганизмами /9/.
Удалось также выяснить, что процесс взаимодействия ПАВ с поверхностью бактерий затрагивает такие важные моменты структурно-функционального единства живой клетки, как проницаемость, взаимосвязь амфифильных компонентов в поверхностных слоях и мембранах, а также целостность третичной и вторичной структур белков /10/.
Методом сканирующей электронной микроскопии установлена картина дезинтегрирующего действия 1%-го додецилсульфата натрия (ДСН) на клетки пропионовокислых бактерий. Это ПАВ в течение 1 ч инкубации с бактериальными клетками приводит их к лизису и фрагментации клеточных стенок с образованием высокомолекулярных агломератов.
Чрезвычайно разнообразны данные /4/, касающиеся воздействия ПАВ на клеточные стенки бактерий и полученные на основании биохимических экспериментов без помощи электронной микроскопии. Установлено, что механизм действия ПАВ на изолированные клеточные стенки различных грамотрицательных бактерий заключается во взамиодействии детергента с липидами, липопротеинами и липополисахаридными фрагментами клеточных стенок, а не в действии на разрыв дисульфидных (-S-S-) связей, как полагалось ранее.
При обработке клеток E.coli лизоцимом и версеном в течение 30–45 с в ледяной бане они становятся чувствительными к литическому действию неионогенного детергента бридж-58. Степень лизиса зависит от концентрации детергента. Эффективность действия этого НПАВ в тысячу раз меньше, чем ДСН и ДОХ. Разрушение клеток под воздействием ПАВ зависит от концентрации ионов магния в среде, ионной силы и времени лизиса. В присутствии Mg2+, концентрация которого составляет 70 мМ, из клеток выходят только низкомолекулярные РНК и растворимые белки, а при концентрации 40 мМ 70 S субъединицы и рибосомные фрагменты выделяются вместе с растворимым материалом. При более низких концентрациях Mg2+ в экстракционном растворе обнаруживаются полирибосомы, а при падении ее ниже 5 мМ из клеток выходит ДНК. Предполагаемый механизм действия НПАВ на клеточные стенки и мембраны можно представить следующим образом. Поверхность клетки является своеобразным молекулярныи ситом с порами, размер которых зависит от концентрации Mg2+ и ионной силы окружающей среды. Можно также предположить, что местом действия НПАВ является слой клеточных стенок бактерий /11/.
В условиях, при которых ДСН и тритон Х-100 полностью, а бридж-58 частично растворяют клеточную стенку E.coli, лаурилсаркозилат вызывает избирательную диссоциацию цитоплазматической мембраны (ЦПМ). Наличие ионов магния при обработке клеточных стенок препятствует растворению цитоплазматической фракции лаурилсаркозилатом. Тритон Х-100 в этих условиях растворял только ЦПМ и не действовал на наружную мембрану.
Изучено влияние солей KCl, NaCl, NH4Cl, (NH4)2SO4 на антимикробную активность неионных ПАВ, в частности по отношению к стафилококкам. Механизм действия одновалентных катионов в это случае связан с воздействием ПАВ на клеточную стенку способностью конкурировать с антимикробными агентами. Установлено, что мутант стафилококков, дефектный по липолисахаридам, имеет повышенную чувствительность к дезоксихолату и таким КПАВ, как гексадецилпиридинхлорид, бензаммонийхлорид. Присутствие большого количества липополисахаридов и белков с фосфолипидом на внешней мембране являются решающим фактором, который определяет устойчивость грамотрицательных микроорганизмов к детергентам. В отношении устойчивости к ПАВ бактерий-деструкторов, например псевдомонад к ДСН, полагают, что большая устойчивость штамма-деструктора по сравению с мутантным штаммом (не способным разрушать ДСН) обусловлена не столько наличием специфических ферментов, разрушающих ПАВ, сколько особенностями биохимического состава клеточной стенки /5/.
Ряд авторов /12/ отмечают также, что «молодые» бактериальные клетки, выращенные на полноценной питательной среде, Устойчивее к действию ДСН, чем клетки более поздней фазы роста. Существенное значение также заряд клеточной поверхности. При щелочном значении рН на поверхности клетки уменьшается число положительно заряженных групп, в соответствии с этим снижается и количество сорбированного на поверхности ПАВ за счет электростатического притяжения гидрофильной части молекулы ДСН, несущей отрицательный заряд. Вследствие этого количество ПАВ на поверхности обусловлено теми гидрофобными участками, с которыми взаимодействует алкильная часть молекулы ДСН. Таким образом, ПАВ способны взаимодействовать с различными компонентами клеточных стенок бактерий, включая муреиновый слой, белки, липиды, липопротеины, липолисахариды. Проникновение ПАВ внутрь клеток, если оно затруднено пространственными или электростатическими факторами, может происходить и через поры. Существенную роль в устойчивости микроорганизмов к действию детергентов играет «электростатическое экранирование», обусловленное наличием заряженных функциональных групп на поверхности их клеток, а также присутствием ионов металлов в среде /5/.
Рассмотрим общую характеристику мембран. На электронных микрофотографиях ультратонких срезов клеток бактериальная клеточная мембрана выглядит как двойная линия шириной около 8 нм. Она состоит из двух слоев фосфолипидов, в которые включены мембранные белки. Самой перспективной и наиболее убедительно трактующей современные экспериментальные данные считается метаморфно-жидкостно-мозаичная модель структуры мембраны. С ее помощью объясняется и присутствие в мембранах белков двух типов: периферических и интегральных. Первые переходят в надосадочную жидкость при отмывании мембран буферными растворами с различными значениями рН или ионной силы. Вторые – внутренние белки, сохраняющие связь с мембранами после проведения перечисленных операций и освобождающиеся только после разрушения фосфолипидного бислоя. Следует отметить, что обычно интегральные белки имеют амфифильную природу и способны к самоагрегации в водных растворах. Большая часть мембранных белков бактерий является белками-переносчиками и ферментами, ответственными за биосинтез макромолекул. В настоящее время известно около 20 различных белков бактериальных внешних мембран, некоторые из них синтезируются в больших количествах. ПАВ является уникальным инструментом для для извлечения белков из бактериальных мембран /12/.
Принципиальное сходство в действии НПАВ и АПАВ свидетельствует о том, что главным агентом фрагментациимембраны являются не заряженные гидрофильные группы детергента, а гидрофобная часть молекулы. Отсюда следует, что мицелла, соприкоснувшись с поверхностью мембраны, вероятно, изменяет свою конфигурацию, обнажая гидрофобные группы. В такой форме ПАВ взаимодействует с мембраной, главным образом за счет неполярной гидрофобной части молекул, что, по-видимому, сопровождается солюбилизацией ПАВ в гидрофобных участках мембраны. При этом последняя дробится на более или менее крупные липопротеидные фрагменты, солюбилизированные благодаря присутствию в них ПАВ /13/.
Связывание детергента с мембраной зависит от числа связывающих мест и от степени их сродства к молекулам детергента. Число мест связывания при высоком уровне сродства невелико, что, в свою очередь, слабо влияет на конформацию мембранных белков. С увеличением концентрации детергента постепенно начинают насыщать места связывания с высоким сродством к детергенту. Этим объясняется «мягкое» воздействие НПАВ на мембраны, так как значения их концентрации мицеллообразования (ККМ) ниже, чем в случае АПАВ. При изучении последовательности действий КПАВ на цитоплазматические мембраны стрептококков установлено, что в первую очередь изменяется проницаемость мембран. Этим обусловлено нарушение тех функций мембран, которые зависят от их нативной проницаемости – транспорта веществ и преобразования энергии. Действие более высоких концентраций КПАВ сопровождается солюбилизацией белковых и липидных компонентов мембран, изменением вторичной структуры белков и инактивацией их ферментных систем. Нарушение проницаемости мембран стрептококков под влиянием катионных детергентов определяется действием этих соединений на липидные компоненты мембран, что приводит к изменению структурной организации их гидрофобной области /14/.