Пруст установил, что постоянство соотношений компонентов наблюдается во многих соединениях. Он сформулировал общее правило, согласно которому все соединения содержат элементы в строго определенных пропорциях вне зависимости от условия получения этих соединений. Это правило называется законом постоянства состава или иногда законом Пруста.
Джон Дальтон – первооткрыватель закона кратных отношений и создатель основ атомной теории. Он обнаружил, что два элемента могут соединяться друг с другом в различных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение.
В 1803 году Дальтон обобщил результаты своих наблюдений и сформулировал важнейший закон химии – закон кратных отношений. Этот закон полностью отвечает атомистическим представлениям. Дальтон также создал новую версию атомистической теории, опиравшуюся на законы постоянства состава и закон кратных отношений. Эта теория нанесла последний удар по бытовавшим еще представлениям о возможностях взаимных переходов элементов-стихий.
Главной заслугой Гей-Люссака в установлении химических закономерностей и особенно в создании атомно – молекулярных представлений было открытие законов простых объемных отношений при взаимодействии газов(если газы образуют соединение, соотношение их объемов всегда представляет собой соотношение кратных чисел). А.Авогадро принадлежит заслуга объяснения объемных законов Гей-Люссака посредством гипотезы, согласно которой одинаковые объемы всех газов содержат одно и то же число мельчайших частиц – молекул. При этом Авогадро удалось строго разграничить понятие о молекулах от представления об атомах.
Работы этих ученых внесли существенный вклад в развитие химической атомистики. Они показали, что установление основных химических закономерностей требует не только качественных, но и количественных исследований.[5]
Веса и символы. Поворотный этап в истории развития химической атомистики связан с именем шведского химика Йенса Якоба Берцелиуса. Он вслед за Дальтоном внес особенно большой вклад в создание атомистической теории.
После того, как атомистическая теория была принята, стало возможным изображать вещества в виде молекул, содержащих постоянное число атомов различных элементов. Берцелиус решил, что для изображения элементов достаточно лишь начальных букв названий. Он предложил, чтобы каждому элементу соответствовал особый знак, который был бы одновременно и символом элемента, и символом одиночного атома этого элемента, и с качестве такого знака предложил использовать начальную букву латинского названия элемента. Так появились химические символы, которыми пользуются и поныне.
Электролиз. Изучая влияние электрического тока на химические вещества, ученые смогли выделить ряд новых элементов. Очень часто неоткрытые элементы входили в состав оксидов. Чтобы выделить элемент, соединенный с кислородом, последний необходимо было удалить. Под воздействием какого-либо другого элемента, обладающего более сильным сродством к кислороду, атом(ы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказался эффективным.
Английский химик Гемфри Дэви решил, что если вещество нельзя разложить химическим путем, то, возможно, это удастся осуществить под действием электрического тока: ведь таким способом удалось разложить даже молекулу воды. Дэви сконструировал батарею; пропуская ток, который давала эта батарея, через растворы соединений, он пытался выделить неизвестные элементы, но разложил только воду.
Необходимо было прежде удалить воду. Однако через твердые вещества ему даже не удалось пропустить ток. Наконец, Дэви догадался расплавить соединения и пропустить ток через расплав. Это оказалось действенным. Электролизом Дэви получил калий, натрий, магний, стронций, барий, кальций.
Работы Дэви по электролизу продолжил его помощник и ученик Майкл Фарадей. Ряд электрохимических терминов, введенных Фарадеем, используется и по сей день(электролиз, электролит, электроды, анод, катод, анионы, катионы).
В 1832 году Фарадей установил, что электрохимические процессы характеризуются определенными количественными соотношениями, и сформулировал следующие два закона электролиза:
Вес вещества, выделившегося на электроде во время электролиза, пропорционален количеству электричества, пропущенного через раствор.
Вес металла, выделенного данным количеством электричества, пропорционален эквивалентному весу этого металла.
Крушение витализма. В 1807 году Берцелиус предложил вещества, которые типичны для живой природы, называть органическими, а вещества, характерные для неживой природы -неорганическими. XIX век был временем господства витализма – учения, рассматривающего жизнь как особое явление, подчиняющееся влиянию особых жизненных сил. Сторонники витализма утверждали, что для превращения неорганических веществ в органические требуется какое-то особое воздействие, которое проявляется только внутри живой ткани.
В 1828 году Фридрих Вёлер, нагревая цианат аммония, обнаружил образование кристаллов, похожих на мочевину. Тем самым он получил из неорганического вещества органическое.
Открытие Вёлера способствовало низвержению витализма и вдохновило химиков на попытки синтеза органического вещества.
В 1845 году Адольф Вильгельм Герман Кольбе успешно синтезировал уксусную кислоту; в 50-е годы XIX века Пьер Эжен Марселен Бертло синтезировал метиловый и этиловый спирты, метан, бензол, ацетилен; в 1812 году Кирхгофу удалось получить глюкозу; в 1820 году Анри Браконно получил глицин – первую аминокислоту; в 1809 Мишель Эжен Шеврель выделил жирные кислоты.
В 1854 году Бертло, нагревая глицерин со стеариновой кислотой, получил тристеарин, который оказался идентичным тристеарину, полученному из природных жиров. Он был самым сложным из синтезированных к тому времени аналогов природных продуктов.
Бертло сделал еще более важный шаг. Вместо стеариновой кислоты он взял кислоты, похожие на нее, но полученные не из природных жиров, и также нагрел их с глицерином. В результате Бертло получил соединения, очень похожие на обычные жиры, но несколько отличающиеся от любого из природных жиров.
Этот синтез показал, что химик не только способен синтезировать аналоги природных продуктов, он в состоянии сделать большее. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX века.
К середине XIX века стало непопулярным причислять то или иное соединение к органическим или неорганическим, исходя лишь из того, является или не является оно продуктом живой ткани. Тем не менее деление соединений на органические и неорганические имело смысл. Свойства соединений этих классов настолько различаются, что даже приемы работы химика-органика и химика-неорганика совершенно различны.
Немецкий химик Фридрих Август Кекуле фон Страдонитц сделал верный вывод. В учебнике, опубликованном в 1861 году Кекуле определил органическую химию как химию соединений углерода. Правда, несколько соединений углерода скорее следует считать неорганическими.
Изомеры и радикалы. В первые десятилетия XIX века считалось, что для каждого соединения характерна своя собственная эмпирическая формула и что у двух различных соединений она не может быть одинаковой.
У органических соединений в то время было невозможно установить точную эмпирическую формулу. Однако основоположники органического анализа (Ю.Либих, Ж.Б.А. Дюма, Ф.Вёлер) в процессе своих исследований получили такие результаты, которые пошатнули веру в важность эмпирической формулы. Либих и Вёлер изучали фульминат и цианат серебра соответственно; и хотя эмпирические формулы этих веществ одинаковы, их свойства различны. Вскоре Берцелиус открыл виноградную и винную кислоты, которые обладают различными свойствами, но описываются одной и той же эмпирической формулой. Поскольку соотношения элементов в этих различных соединениях было одинаковым, Берцелиус предложил назвать такие соединения изомерами.
Казалось очевидным, что, если две молекулы построены из одинакового числа одних и тех же атомов и все же обладают различными свойствами, различие коренится в способе расположения атомов внутри молекулы. При большом количестве атомов число возможных вариантов расположения возрастает настолько, что трудно становится решить, какому соединению соответствует какое расположение.
Поэтому проблему строения молекул можно было бы почти сразу отвергнуть как нерешаемую, если бы не появилась возможность упростить ее.
Гей-Люссак и Тенар, работая над цианидом водорода, обнаружили, сто группа CN (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа из двух или более атомов, способная переходить без изменения из одной молекулы в другую, была названа радикалом.
Короче говоря, становилось ясно, что открыть тайну строения больших молекул можно, лишь установив строение определенного числа различных радикалов. Тогда не составит большого труда построить из радикалов молекулы.
В 1852 году английский химик Эдуард Франкланд выдвинул теорию, которая позднее стала известна как теория валентности, согласно которой каждый атом обладает определенной способностью к насыщению(или валентностью). Прежде всего с введением понятия «валентность» удалось уяснить различие между атомным весом и эквивалентным весом элементов. Даже в середине XIX века многие химики еще путали эти понятия.
Эквивалентный вес атома равен его атомному весу, деленному на его валентность.