Данное предсказание было проверено в 1962 г. с помощью пары очень точных часов, установленных на вершине и у подножия водонапорной башни. Часы у основания, которые были ближе к Земле, шли медленнее в точном соответствии с общей теорией относительности. Этот эффект очень мал: часы, размещенные на поверхности Солнца, лишь на минуту в год обгоняли бы такие же часы, находящиеся на Земле. Однако с появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!
Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой — у моря, первый будет стареть быстрее второго. И если им доведется встретиться снова, один из них окажется старше. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени — для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.
До 1915 г. пространство и время мыслились как арена, на которой разворачиваются события, никак ее саму не затрагивающие. Это можно сказать даже о специальной теории относительности. Тела двигались, силы притягивали или отталкивали, никак не затрагивая времени и пространства, которые просто длились. Казалось естественным думать, что пространство и время были и будут всегда. Однако появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства‑времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят. Как невозможно говорить о событиях во Вселенной вне понятий пространства и времени, так после появления общей теории относительности стало бессмысленным говорить о пространстве и времени вне пределов Вселенной. За десятилетия, прошедшие с 1915 г ., это новое понимание пространства и времени радикально изменило нашу картину мира. Как вы узнаете далее, старая идея о неизменном мироздании навсегда уступила место образу динамичной, расширяющейся Вселенной, которая, по всей видимости, появилась в определенный момент в прошлом и, возможно, прекратит существование в некоторый момент в будущем.
Глава седьмая
РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ
Если посмотреть на небо ясной безлунной ночью, то самыми яркими объектами, скорее всего, окажутся планеты Венера, Марс, Юпитер и Сатурн. А еще вы увидите целую россыпь звезд, похожих на наше Солнце, но расположенных намного дальше от нас. Некоторые из этих неподвижных звезд в действительности едва заметно смещаются друг относительно друга при движении Земли вокруг Солнца. Они вовсе не неподвижны! Это происходит, потому что такие звезды находятся сравнительно близко к нам. Вследствие движения Земли вокруг Солнца мы видим эти более близкие звезды на фоне более далеких из различных положений. Тот же самый эффект наблюдается, когда вы едете на машине, а деревья у дороги словно бы изменяют свое положение на фоне ландшафта, уходящего к горизонту (рис. 14). Чем ближе деревья, тем заметнее их видимое движение. Такое изменение относительного положения называется параллаксом. В случае со звездами это настоящая удача для человечества, потому что параллакс позволяет нам непосредственно измерить расстояние до них.
Движетесь ли вы по дороге или в космосе, относительное положение ближних и дальних тел изменяется по мере вашего движения. Величина этих изменений может быть использована для определения расстояния между телами.
Самая близкая звезда, Проксима Центавра, удалена от нас примерно на четыре световых года или сорок миллионов миллионов километров. Большинство других звезд, видимых невооруженным глазом, находятся в пределах нескольких сотен световых лет от нас. Для сравнения: от Земли до Солнца всего восемь световых минут! Звезды разбросаны по всему ночному небу, но особенно густо рассыпаны они в полосе, которую мы называем Млечным Путем. Уже в 1750 г. некоторые астрономы высказывали предположение, что вид Млечного Пути можно объяснить, если считать, что большинство видимых звезд собраны в дискообразную конфигурацию, наподобие тех, что мы теперь называем спиральными галактиками. Только через несколько десятилетий английский астроном Уильям Гершель подтвердил справедливость этой идеи, кропотливо подсчитывая число звезд, видимых в телескоп на разных участках неба. Тем не менее полное признание эта идея получила лишь в двадцатом столетии. Теперь мы знаем, что Млечный Путь — наша Галактика — раскинулся от края до края приблизительно на сто тысяч световых лет и медленно вращается; звезды в его спиральных рукавах совершают один оборот вокруг центра Галактики за несколько сотен миллионов лет. Наше Солнце — самая обычная желтая звезда средних размеров — находится у внутреннего края одного из спиральных рукавов. Определенно, мы проделали длинный путь со времен Аристотеля и Птолемея, когда люди считали Землю центром Вселенной.
Современная картина Вселенной начала прорисовываться в 1924 г., когда американский астроном Эдвин Хаббл доказал[7], что Млечный Путь не единственная галактика. Он открыл, что существует множество других звездных систем, разделенных обширными пустыми пространствами. Чтобы подтвердить это, Хаббл должен был определить расстояние от Земли до других галактик. Но галактики находятся так далеко, что, в отличие от ближайших звезд, действительно выглядят неподвижными. Не имея возможности использовать параллакс для измерения расстояний до галактик, Хаббл вынужден был применить косвенные методы оценки расстояний. Очевидной мерой расстояния до звезды является ее яркость. Но видимая яркость зависит не только от расстояния до звезды, но также и от светимости звезды — количества испускаемого ею света. Тусклая, но близкая к нам звезда затмит самое яркое светило из отдаленной галактики. Поэтому, чтобы использовать видимую яркость в качестве меры расстояния, мы должны знать светимость звезды.
Светимость ближайших звезд можно рассчитать по их видимой яркости, поскольку благодаря параллаксу мы знаем расстояние до них. Хаббл заметил, что близкие звезды можно классифицировать по характеру испускаемого ими света. Звезды одного класса всегда имеют одинаковую светимость. Далее он предположил, что если мы обнаружим звезды этих классов в далекой галактике, то им можно приписать ту же светимость, какую имеют подобные звезды поблизости от нас. Располагая такой информацией, несложно вычислить расстояние до галактики. Если вычисления, проделанные для множества звезд в одной и той же галактике, дают одно и то же расстояние, то можно быть уверенным в правильности нашей оценки. Таким способом Эдвин Хаббл вычислил расстояния до девяти различных галактик[8].
Сегодня мы знаем, что звезды, видимые невооруженным глазом, составляют ничтожную долю всех звезд. Мы видим на небе примерно 5000 звезд — всего лишь около 0,0001% от числа всех звезд нашей Галактики, Млечного Пути. А Млечный Путь — лишь одна из более чем сотни миллиардов галактик, которые можно наблюдать в современные телескопы. И каждая галактика содержит порядка сотни миллиардов звезд. Если бы звезда была крупинкой соли, все звезды, видимые невооруженным глазом, уместились бы в чайной ложке, однако звезды всей Вселенной составили бы шар диаметром более тринадцати километров.
Звезды настолько далеки от нас, что кажутся светящимися точками. Мы не можем различить их размер или форму. Но, как заметил Хаббл, есть много различных типов звезд, и мы можем различать их по цвету испускаемого ими излучения[9]. Ньютон обнаружил, что, если солнечный свет пропустить через трехгранную стеклянную призму, он разложится на составляющие цвета, подобно радуге (рис. 15). Относительная интенсивность различных цветов в излучении, испускаемом неким источником света, называется его спектром. Фокусируя телескоп на отдельной звезде или галактике, можно исследовать спектр испускаемого ими света.
Анализируя спектр излучения звезды, можно определить как ее температуру, так и состав атмосферы.
В числе прочего излучение тела позволяет судить о его температуре. В 1860 г. немецкий физик Густав Кирхгоф установил, что любое материальное тело, например звезда, будучи нагретым, испускает свет или другое излучение, подобно тому как светятся раскаленные угли. Свечение нагретых тел обусловлено тепловым движением атомов внутри них. Это называется излучением черного тела (несмотря на то что сами нагретые тела не являются черными). Спектр чернотельного излучения трудно с чем‑нибудь перепутать: он имеет характерный вид, который изменяется с температурой тела (рис. 16). Поэтому излучение нагретого тела подобно показаниям термометра. Наблюдаемый нами спектр излучения различных звезд всегда похож на излучение черного тела, это своего рода извещение о температуре звезды.