Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 21 из 57)

Проблема элементарных частиц связана с самыми основами естественно-научной картины мира, и изучается она в некотором отрыве от других областей физики. Здесь особенно интересно то, что ответы на многие вопросы, связанные с элементарными частицами ищутся в современной космологии, в моделях первичного нуклеосинтеза, т.е. ядерного синтеза в первые мгновения после Большого Взрыва – гипотетического Начала Вселенной. Именно в этот период, как считается были порождены элементарные частицы. Дело еще и в том, что ускорителей, на которых можно было бы получить энергии, соответствующие энергиям объединения трех и четырех взаимодействий пока не предвидится, поэтому и обращаются к Вселенной, чтобы найти в ней возможные ограничения для огромного числа элементарных частиц. Таким образом, в последние 30 лет между физикой элементарных частиц и космологией существует тесная связь. Совокупность астрофизических данных можно рассматривать как «экспериментальный материал», накопленный в результате работы Вселенной как гигантского ускорителя частиц.

3. Атомное ядро

Под ядром атома понимается его центральная часть, в которой сосредоточена практически вся масса атома и весь его положительный заряд. Ядро состоит из нуклонов – протонов и нейтронов (обозначение p и n). Масса протона mP = 1,673×10-27 =1,836me , mn = 1,675×10-27 = 1835,5me. Масса ядра не равна сумме масс протонов и нейтронов, входящих в него (т.н. «дефект масс»). Протон несет элементарный положительный заряд, нейтрон – частица незаряженная. Число электронов в атоме равно порядковому номеру Z элемента в таблице Менделеева, а число протонов, поскольку в целом атом нейтрален, равно числу электронов. Тогда число нейтронов в ядре определяется следующим образом: NP = A – Z, где А – массовое число, т.е. целое число, ближайшее к атомной массе элемента в таблице Менделеева, Z – зарядовое число (число протонов). Для обозначения ядер применяется запись ZXA, где Х – символ химического элемента в таблице Менделеева. Ядра с одинаковыми Z, но разными А называются изотопами. Сейчас известно более 300 устойчивых и более 1000 неустойчивых изотопов. С неустойчивыми изотопами связано явление радиоактивности – ядерного распада.

Ядро в целом – устойчивая система, для его разрушения необходимо затратить энергию. Эта энергия называется энергией связи ядра. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи. Нуклоны в ядре удерживаются ядерными силами, представляющими сильное взаимодействие и имеют обменный характер. Ядерные силы обладают рядом свойств:

1. Ядерные силы являются короткодействующими (радиус действия порядка 10-15 м) На этих расстояниях они значительно превышают кулоновские силы отталкивания протонов. При значительном уменьшении расстояния притяжение нуклонов сменяется отталкиванием (см. рис.2).

2. Ядерные силы обладают зарядовой независимостью, т.е. действуют как между заряженными, так и между нейтральными частицами.

3. Ядерные силы обладают свойствами насыщения. Это означает, что каждый нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему нуклонов.

4. Ядерные силы не являются центральными. Их величина зависит от ориентации спинов частиц.

4. Молекулы и реакционная способность веществ.

Молекула – наименьшая структурная единица химического соединения, обладающая его главными химическими свойствами. Молекулы простых веществ состоят из одинаковых атомов, сложных – из разных атомов. Инертные газы (гелий, неон, аргон, криптон, ксенон, радон) находятся в одноатомной состоянии. Существует большое количество соединений, молекулы которых состоят из многих тысяч атомов (искусственные полимеры, белки, целлюлоза). Такие молекулы называются макромолекулами.

Как известно, химия изучает процессы превращения молекул при взаимодействиях и при воздействии на них внешних факторов (теплоты, света, электрического тока, магнитного поля), во время которых образуются новые химические связи. Под химической связью понимается результат взаимодействия между атомами, выражающийся в создании определенной конфигурации атомов, отличающих один тип молекулы от другого.

В молекуле выделяют два основных типа типа связей: ионную и ковалентную (см. рис. 3а и 3б), а также водородную.

При ионной связи один атом отдает другому один или несколько электронов, и так каждый атом становится обладателем стабильного числа электронов. (Например, у атома хлора для стабильности недостает одного электрона, а у атома натрия во внешней оболочке - только один электрон. Его принимает атом хлора, и тогда у натрия протонов становится больше, чем электронов. Атомы натрия и хлора, превратившись в положительно и отрицательно заряженные ионы, притягиваются друг к другу и образуют поваренную соль).

При ковалентной связи двух атомов возникает обобществленная пара электронов, по одному от каждого атома (пример – молекула водорода). Оба атома притягивают эту пару электронов с одинаковой силой, и электроны (или электронное облако) находятся большее время между ними. Если ковалентная связь образуется между атомами разных элементов, то электронное облако оказывается смещенным, т.е. большее время находится ближе к более притягивающему атому. Такую связь называют полярной, или электрически несимметричной (в последнем случае одна приближается к ионной).

Водородная связь названа так из-за атома водорода, который соединен ковалентной связью с другим атомом (например, кислорода или азота) так, что положительной оказывается водородная часть молекулы. Этот частично положительный водородный «край» притягивается третьим, отрицательно заряженным атомом (опять же кислорода или азота). Эта связь слабее, чем две предыдущие, но широко распространена в живой материи. Практически, можно сказать, что на ней держится мир живого.

Силы взаимодействия между атомами являются короткодействующими (радиус действия r ~10-9 м, размер атома ~ 10-10м). Причем одновременно действуют как силы притяжения, так и силы отталкивания, но они по-разному зависят от расстояния. Схема здесь та же, что и на рис. 2. При r = r0 – состояние устойчивого равновесия, на этом расстоянии и находятся атомы, образующие молекулу. если увеличить r - увеличиваются силы притяжения и возвращают систему в исходное состояние. При r < r0 силы отталкивания также возвращают систему в состояние устойчивого равновесия.

Энергия химических связей. Химические связи можно рассматривать с точки зрения превращения энергии: если при создании молекулы

ее энергия меньше, чем сумма энергий составляющих ее атомов, то она может существовать, т.е. ее связь устойчива. Устойчивым считается состояние, в котором потенциальная энергия минимальна, поэтому при образовании молекулы атомы находятся в потенциальной яме, совершая небольшие тепловые колебания около положения равновесия (см. рис.4). Расстояние от вертикальной оси до дна ямы соответствует равновесию – на этом расстоянии находились бы молекулы, если бы прекратилось тепловое движение. Точки левее дна соответствуют отталкиванию, правые – притяжению. Крутизна кривой выражает силу взаимодействия между атомами: чем круче кривая, тем больше сила взаимодействия.

Для разных пар атомов различны не только расстояния от вертикальной оси до дна ямы, но и глубина ям. Действительно, для того, чтобы выбраться из ямы, нужна энергия, соответствующая глубине ямы. Поэтому глубину ямы можно назвать энергией связи частиц, или энергией ассоциации. Энергия, необходимая для разложения молекулы на атомы, называется энергией диссоциации. Она равна энергии ассоциации.

Насыщаемость молекул, т.е. способность присоединять атомы, определяет их постоянный состав для данного вещества и связана с валентностью – свойством атомов (или группы атомов) соединяться с некоторым числом других атомов. Величина валентности определяется числом атомов водорода (или другого одновалентного элемента), с которыми соединяется атом данного элемента.

Химические реакции и их направленность. Химические реакции – это основа химии. Одни реакции идут в обе стороны (тогда и стрелки в уравнении реакции рисуют в обе стороны), т.е. являются обратимыми, другие только в одну, третьи – вообще не идут). Здесь важно представлять, от чего зависит возможность осуществления реакции, т.е. перестройки химических связей. Ответ на этот вопрос дает термодинамика. Рассмотрим условия самопроизвольного развития химической реакции и условия ее возникновения. Допустим, вы прижгли ранку перекисью водорода (неустойчивое соединение): 2Н2О2 ® 2Н2О + О2, но обратной реакции не будет. Термодинамика объясняет это так: реакция пойдет только при уменьшении энергии веществ и увеличении энтропии. В самом деле, энтропия растет, так как в малой молекуле воды (она меньше, чем молекула перекиси водорода) расположение атомов менее упорядочено, чем в большой. Реакция возможна, если она сопровождается уменьшением величины свободной энергии F = E – TS. (Пример с камнем: когда он падает в поле сил тяготения, его потенциальная энергия уменьшается – обратно он самопроизвольно не поднимется). В химических реакциях обязателен и учет изменения энтропии, так как возможность реакции еще не означает, что она самопроизвольно пойдет.