Смекни!
smekni.com

Создание классической механики и экспериментального естествознания (стр. 3 из 8)

Теория Ньютона утверждала, что сила тяготения универсальна и проявляется между любыми материальными частицами, независимо от их конкретных качеств и состава, и всегда пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Законы движения планет предстали как следствия закона всемирного тяготения. Причину и природу тяготения Ньютон не считал возможным обсуждать за неимением на этот счет достаточного количества фактов. Поэтому и физику, построенную на ее основе, и физическую картину мира, завершенную Ньютоном, можно назвать феноменологической. Закон всемирного тяготения стал физическим фундаментом небесной механики.

Нельзя не сказать о математических достижениях Ньютона, без которых не было бы и его гениальной теории тяготения. Для математического описания, сведения в единую систему движений и взаимодействий тел самого различного рода, качеств, масштабов Ньютон впервые объединил число, геометрическую фигуру и движение. Свой метод характеристик исследуемых движений Ньютон назвал «методом флюксий». В математике Ньютону принадлежат также важнейшие труды по алгебре, аналитической и проективной геометрии и др.

Оптика – важнейшая часть физики, более молодая, чем механика. Большую трудность для зарождающейся оптики представляло объяснение цве­тов. Поэтому по праву вторым великим достижением Ньютона было открытие того, что белый свет состоит из света различных цветов и, следовательно, цветной свет имеет более простую природу, чем белый. Ученый доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Он построил первый в мире отражатель­ный зеркальный телескоп – рефлектор. Затем ученый сделал вручную еще один телескоп больших размеров и лучшего качества.

Ньютон вывел теоретически, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Сила, заставляющая тела падать на Землю, оказалась равной той, которая управляет движением Луны. Открытие Ньютона привело к созданию новой картины мира, согласно которой все планеты, находящиеся друг от друга на колоссальных расстояниях, оказываются связанными в одну систему. Дальнейшие исследования Ньютона позволили ему определить массу и плотность планет и Солнца. Он установил, что наиболее близкие к Солнцу планеты отличаются наибольшею плотностью. Ньютон доказал, что Земля представляет собой шар, расширенный у экватора и сплюснутый у полюсов, а также зависимость приливов и отливов от действия Луны и Солнца на воды морей и океанов.

Ньютон рассмот­рел главную космологическую проблему: конечна или бесконечна Вселенная. Он пришел к выводу, что лишь в случае бесконечности Вселенной мате­рия может существовать в виде множества космических объектов – центров гравитации. В конечной Вселенной материальные тела рано или поздно слились бы в единое тело в центре мира. Это было первое строгое физико-теоретическое обоснование бесконечности мира. Ньютон задумывался и над проблемой происхождения упорядо­ченной Вселенной. Однако здесь он столкнулся с задачей, для реше­ния которой еще не располагал научными фактами. Он первым отчет­ливо осознал, что одних только механических свойств материи для этого недостаточно. Ньютон справедливо утверждал, что только из одних неупоря­доченных механических движений частиц не могла возникнуть вся сложная организация мира. Для него тайной являлось начало орбитального движения планет. Оставалось прибегнуть лишь к некоей необъяснимой сверхсиле – Богу. Поэтому Ньютон вынужден был допустить божественный «первый толчок», благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце. Понадобилось всего полвека для того, чтобы в естествознании сформировалась идея естественной эволюции материи, опровергаю­щая божественный «первотолчок».

Крупнейшим достижением научной революции стало крушение средневековой картины мира и формирование новых черт мировоззрения, позволивших создать науку Нового времени. Родился новый образ мира, с новыми религиозными и антропологическими проблемами. Произошло формирование знания, которое объединяет теорию и практику, науку и технику. Именно опиравшаяся на строгие количественные законы физика определила новую физическую картину мира, которая на два века стала основным направляющим и контролирующим фактором в развитии естествознания. На ее основе формировались все более сложные и совершенные модели Вселенной. XVIII век - век просвещения, возрождающихся материалистических учений, набиравшего темп экспериментального естествознания. Основу метода, составляющего ядро естествознания, образует логический вывод утверждений из принятых гипотез и последующая их эмпирическая проверка. Научная революция порождает нового ученого – экспериментатора, сила которого в эксперименте, благодаря новым измерительным приборам становящегося все более и более точным.

Вопрос № 2 Самоорганизация в открытых неравновесных системах

Синергетика

Человек всегда стремился постичь природу сложного, пытаясь ответить на вопросы: как ориентироваться в сложном и нестабиль­ном мире? Какова природа сложного и каковы законы его функцио­нирования и развития? В какой степени предсказуемо поведение сложных систем? Современное естество­знание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, – систем, способных к самоорга­низации, саморазвитию. Именно это изучает наука синергетика. Термин «синергетика» предложил в начале 70-х гг. XX в. немец­кий физик Г. Хакен. Синергетикаэто междисциплинарное направление научных ис­следований, предмет которого – общие закономерности самоор­ганизации в природных и социальных системах. Синергетика открывает для точного, количественно­го, математического исследования такие стороны мира, как его не­стабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п. Синергетика рассматривает системы самой разнообразной приро­ды – физические, химические, биологические, социальные, – про­цессы самоорганизации в которых, как выяснилось, описываются од­ними и теми же математическими моделями и, следовательно, подчиняются универсальным закономерностям.

Главная идея синергетики – это идея о принципиальной возможнос­ти спонтанного возникновения порядка и организации из беспоряд­ка и хаоса в результате процесса самоорганизации. Решающим фак­тором самоорганизации является образование петли положитель­ной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции ее разрушения средой. Становление самоорганизации во многом определяется характе­ром взаимодействия случайных и необходимых факторов системы и ее среды. Историки давно заметили, что в развитии общества чередуются сравнительно спокойные перио­ды постепенных изменений со временами социальных потрясений и революций, когда за исторически ничтожный срок теряют устойчи­вость и распадаются традиционные социальные институты и возни­кают совершенно новые формы общественной организации. Упорядоченная структура возникает по пороговому механизму, вне­запно, необратимо. Чаше всего возникновение новых упорядоченных структур происхо­дит по бифуркационному сценарию. Бифуркация – математический термин, означающий «раздвоение», переломный момент. Точки бифуркации – спутники любой эволюционирующей систе­мы. Вблизи точек бифуркации в системах наблюдаются зна­чительные флуктуации (случайные отклонения от среднего значения физических величин, характеризующих систему из большого числа частиц), роль случайных факторов резко возрастает. В точке бифуркации система как бы «колеблется» перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация может по­служить началом эволюции (организации) системы в некотором оп­ределенном (и часто неожиданном или просто маловероятном) на­правлении, одновременно отсекая при этом возможности развития в других направлениях. Траектории, по которым возможно развитие системы после точки бифуркации, называются аттракторами. В переломный момент самоорганизации принципиально неиз­вестно, в каком направлении будет происходить дальнейшее разви­тие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации. Самоорганизовавшуюся упорядоченную структу­ру можно рассматривать как результат запоминания системой тех случайных флуктуации, которые имели место в момент перехода че­рез критическую точку. Таким образом, беспорядочные флуктуации, хаос являются тем материалом, из которого строится порядок. На него могут повлиять самые незначительные и не поддающиеся учету факторы. Можно оценить лишь вероятность, с которой система двинется по той или иной ветви бифуркационной диаграммы. С каждой новой точкой бифуркации неопределенность усиливается, и потому отдаленное будущее оказывается непредска­зуемым. Однако, система, прошедшая несколько точек бифуркации, приобретает исто­рию: по ее современному состоянию можно установить, в каких со­стояниях она находилась ранее. Можно сказать, что история возникает в точках бифуркаций. Пример: в учебниках истории периоды спокойного раз­вития характеризуются достаточно бегло, но как только ход событий приближается к политическому кризису, революции, эпохе реформ, повествование замедляет свой темп, погружаясь в де­тали. То же справедливо для палеонтологии, где наибольший интерес вызывают находки переходных форм, которые могут рассматривать­ся как точки ветвления эволюционного древа, а также для геологии, космологии и вообще любой дисциплины, рассматривающей пред­мет своего изучения в развитии.