Смекни!
smekni.com

Теория хаоса (стр. 4 из 7)

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока

не выйдет за пределы окружности радиуса 2, центр которой лежит в точке
, (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500)
сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых
оставалась внутри окружности, можно установить цвет точки C (если
остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).


5. Детерминированный хаос и информационные технологии

По аналогии явлению нерегулярного (хаотического) движения в нелинейных системах был присвоен терминдинамический,или детерминированный,хаос. Наблюдаемое хаотическое поведение возникает не из-за внешних источников шума, не из-за большого числа степеней свободы и не из-за неопределенности, связанной с квантовой механикой. Оно порождается собственной динамикой нелинейной детерминированной системы. В фазовом пространстве системы такому поведению соответствует странный аттрактор. Аттрактор (attractor) в переводе с английского означает "притягиватель"; в данном случае это множество траекторий в фазовом пространстве, к которым притягиваются все остальные траектории из некоторой окрестности аттрактора, называемой также бассейном притяжения. Термин "странный" используется, чтобы подчеркнуть необычность свойств аттрактора, соответствующего хаотическому поведению. Причиной нерегулярности поведения является свойство нелинейных систем экспоненциально быстро разводить первоначально близкие траектории в ограниченной области фазового пространства. Предсказать поведения траекторий хаотических систем на длительное время невозможно, поскольку чувствительность к начальным условиям высока, а начальные условия, как в физических экспериментах, так и при компьютерном моделировании, можно задать лишь с конечной точностью.

Управление хаосом

На первый взгляд, природа хаоса исключает возможность управлять им. В действительности же дело обстоит с точностью до наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.

Пусть, например, имеется система со странным аттрактором, и требуется перевести фазовую траекторию из одной точки аттрактора в другую. Хаотические траектории обладают свойством с течением времени попадать в окрестность любойточки, принадлежащей аттрактору. Если нужно, чтобы это произошло через время, не большее, чем Т, требуемый результат может быть получен за счет одного или серии малозаметных, незначительных возмущений траектории. Каждое из этих возмущений лишь слегка меняет траекторию. Но через некоторое время накопление и экспоненциальное усиление малых возмущений приводит к достаточно сильной коррекции траектории. При правильном выборе возмущений это позволяет решить поставленную задачу, не уводя траекторию с хаотического аттрактора. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость и удивительную пластичность: система чутко реагирует на внешние воздействия, при этом сохраняя тип движения. Комбинация управляемости и пластичности, по мнению многих исследователей, является причиной того, что хаотическая динамика является характерным типом поведения для многих жизненно важных подсистем живых организмов. Например, хаотический характер сердечного ритма позволяет сердцу гибко реагировать на изменение физических и эмоциональных нагрузок, обеспечивая запас динамической прочности.

Хаос, как бы он ни был интересен, - это лишь часть сложного поведения нелинейных систем. Существует также не поддающееся интуитивному осознанию явление, которое можно было бы назвать антихаосом. Оно выражается в том, что некоторые весьма беспорядочные системы спонтанно "кристаллизуются", приобретая высокую степень упорядоченности. Предполагается, что антихаос играет важную роль в биологическом развитии и эволюции.

Есть ряд аргументов в пользу того, что наряду с хорошо изученными тремя типами поведения динамических систем - стационарными состояниями, периодическими и квазипериодическими колебаниями, а также хаосом, существует и четвертый, специфический тип поведения на границе между регулярным движением и хаосом. Было замечено, что на этой границе, которую называют "кромкой хаоса", могут иметь место процессы, подобные процессам эволюции и обработки информации.

Рис1. Пример применения ассоциативной памяти на основе хаотической динамики для целей ориентирования и навигации. Область для ориентирования общей площадью 576 км2 задается географической картой в масштабе М 1:20000. Она разбита на 16 фрагментов, каждый из которых представляет собой цветной графический образ размером 200х200 пикселов в 256-цветном алфавите. Каждый из образов представлен как предельный цикл в одном и том же двумерном кусочно-линейном отображении.

Для определения местоположения пользователю достаточно предъявить любой кусочек фрагмента карты. Если поиск по кусочку успешен (успех регистрировался при предъявлении программе кусочков вплоть до 1 км2, то есть вплоть до 0,2 процента от первоначальной площади), соответствующий фрагмент карты появится на экране.

Программа демонстрирует также возможность идентификации по искаженным кусочкам. В нашем примере уровень искажений в кусочке, предъявляемом для идентификации, может составлять 70-80 процентов.

В противоположность динамическому хаосу, рассматриваемое явление, именуемое иногда комплексностью (complexity), возникает в системах, состоящих из многих взаимодействующих элементов. Такие системы часто не только демонстрируют четвертый тип поведения, но и обладают адаптивными свойствами, если под адаптацией понимать резкое упрощение динамики системы по сравнению с многомерной хаотической динамикой совокупности ее изолированных элементов. Приводимые ниже примеры отражают ряд общих свойств систем на кромке хаоса.