Смекни!
smekni.com

Теория хаоса (стр. 5 из 7)

Игра "Жизнь" в клеточных автоматах

Совокупность правил этого клеточного автомата (то есть параметров системы) такова, что его поведение находится в узкой зоне между областями устойчивости и хаоса. В системе наблюдается поведение, похожее на "настоящие" жизненные процессы. Кроме того, при анализе таких объектов, как "глайдеры" и "катапульты", математически доказана эквивалентность игры "Жизнь" машине Тьюринга, и, тем самым, доказано наличие в ней процессов, эквивалентных универсальным вычислениям.

Биологическая эволюция

Со времен Дарвина биологи рассматривали эволюцию как процесс естественного отбора. Однако возможно, что биологический порядок отчасти отражает спонтанную упорядоченность, на фоне которой действовал механизм естественного отбора. Другими словами, в процессе эволюции в пространстве морфологических признаков могут быть реализованы не все комбинации, а только некоторое избранное множество "аттракторов". То есть трудно ожидать, что любые уродства возможны. Кроме того, такой механизм значительно ускоряет процесс эволюции. Он резко сужает множество допустимых траекторий движения и, тем самым, необходимое число "итераций" для появления того или иного биологического вида. Здесь уместна аналогия между скоростью сходимости случайного и градиентного методов поиска экстремума: в первом случае поиск ведется по всей области изменения переменных, а во втором - только вдоль определенной траектории.

С точки зрения биологии, не так важно, какие типы аттракторов в пространстве морфологических возможностей реализуются. Важно, что потоки траекторий "сваливаются" в некоторые ограниченные области, тем самым выделяя в пространстве морфологических признаков островки структурно устойчивых видов. А сами аттракторы могут быть стоками, циклами, странными аттракторами и т. д.

Самоорганизованная критичность

Система с большим числом взаимодействующих элементов естественным образом эволюционирует к критическому состоянию, в котором малое событие может привести к катастрофе. Хотя в составных системах происходит больше незначительных событий, чем катастроф, цепные реакции всех масштабов являются неотъемлемой частью динамики. Как следует из теории критичности, малые события вызывает тот же механизм, что и крупные. Более того, составные части системы никогда не достигают равновесия, а вместо этого эволюционируют от одного метастабильного состояния к другому.

Концепция самоорганизованной критичности предполагает, что глобальные характеристики, такие как относительное число больших и малых событий, не зависят от микроскопических механизмов. Именно поэтому глобальные характеристики системы нельзя понять, анализируя ее части по отдельности.

Как можно себе представить механизм адаптации в связанных динамических системах? Заманчиво выглядит модель эволюционного равновесия (кромки хаоса) как некоего вида хаотической синхронизации. Действительно, процесс синхронизации резко упрощает динамику системы, снижая размерность ее аттрактора. Он напрямую определяется степенью связности системы - "адаптивный механизм" движения к кромке хаоса включается только при наличии достаточно сильных связей.

Порождение информации хаотическими системами

Вернемся к свойствам хаоса в маломерных системах. Итак, поведение хаотических траекторий не может быть предсказано на большие интервалы времени. Прогноз движения вдоль траекторий становится все более и более неопределенным по мере удаления от начальных условий. С точки зрения теории информации это означает, что система сама порождает информацию и скорость создания информации тем выше, чем больше хаотичность системы. Поскольку система создает информацию, то ее содержат и траектории системы.

Рис. 2. Пример применения технологии для поиска информации в неструктурированных текстовых архивах. В качестве архива используется текст книжки "Винни-Пух и все-все-все". В ответ на вопрос Пуха "Зачем пчелы делают мед?" система предлагает фрагмент текста, содержащий фразу: "Единственная причина делать мед - та, чтобы я мог есть его".

Запись, хранение и поиск информации с помощью хаоса

Теперь зададимся вопросом: а нельзя ли сопоставить траектории системы информацию в виде интересующей нас последовательности символов? Если бы это удалось сделать, часть траекторий соответствовала бы нашим информационным последовательностям, и их можно было бы получать, решая уравнения, определяющие динамику системы. Если же взять любой (не слишком малый) фрагмент информационной последовательности, с его помощью можно восстановить всю информационную последовательность, соответствующую данной траектории. Разным траекториям соответствуют разные информационные последовательности, и возникает возможность восстановить любую из них по любому ее небольшому фрагменту. Тем самым реализуется ассоциативный доступ (доступ по содержанию) ко всей информации, записанной в системе. Итак, информация запоминается и хранится в виде траекторий динамической системы и обладает свойствами ассоциативности.

Эта идея возникла и получила развитие при попытках понять, чем может быть полезен хаос в обработке информации живыми системами. Были построены математические модели, которые демонстрировали принципиальную возможность записи, хранения и извлечения информации с помощью траекторий динамических систем с хаосом. Эти модели казались очень простыми, и эксперт одного уважаемого международного журнала написал в своей рецензии: "Это просто игрушечные модели, и на их основе не может быть создана никакая технология ни на Востоке, ни на Западе". Однако вскоре за исследования в этом направлении был присужден Главный приз на конкурсе компании "Хьюлетт-Паккард" по распознаванию образов. Развитие "игрушек" привело к тому, что их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете (патент РФ 2050072, патент США US 5774587). И даже на скромных "писишках" стало возможным синтезировать динамические системы с объемом записанной информации, эквивалентной среднему собранию сочинений.

Рис. 3. Источник хаоса, состоящий из нелинейной и линейной систем, замкнутых в кольцо обратной связи. Справа: внешний вид платы электронной схемы (вверху) и фазовый портрет хаотического аттрактора (внизу). Даже небольшие изменения параметров элементов электронной схемы приводят к существенному изменению характера хаотических колебаний.

Разработанная технология позволяет записывать, хранить и извлекать любые типы данных: изображения, тексты, цифровую музыку и речь, сигналы и т. д. Примером использования технологии является персональная система управления факсимильными документами с ассоциативным доступом FacsData Wizard, которая обеспечивает возможность создания архивов неструктурированной информации с полным автоматическим индексированием всей хранимой информации.

Для поиска необходимых документов пользователь составляет запрос путем набора в произвольной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе и при преобразовании исходной информации в текстовую не сказывается существенным образом на качестве поиска. Создание электронного архива не требует дополнительного дискового пространства. Объем, необходимый для хранения записанных документов, может даже уменьшиться.

Передача и защита информации

В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Модуляция носителя может осуществляться либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе формирования колебаний.

Аналогичным образом можно производить модуляцию хаотического сигнала информационным сигналом. Однако возможности здесь значительно шире. Действительно, если в случае гармонических сигналов управляемых характеристик - всего три (амплитуда, фаза и частота), то в случае хаотических колебаний даже небольшое изменение параметра дает надежно фиксируемое изменение характера колебаний. Это означает, что у источников хаоса с изменяемыми параметрами имеется широкий набор схем ввода информационного сигнала в хаотический (то есть модуляции хаотического сигнала информационным). Кроме того, хаотические сигналы принципиально являются широкополосными, интерес к которым в радиотехнике традиционен и связан с большей информационной емкостью. В системах связи широкая полоса частот несущих сигналов используется как для увеличения скорости передачи информации, так и для повышения устойчивости работы систем при наличии возмущений.

В последнее время в связи с развитием спутниковых, мобильных, сотовых и волоконно-оптических многопользовательских коммуникационных систем большое внимание привлекают сигналы с расширением спектра, где полоса частот передаваемого сигнала может быть значительно шире полосы частот информационного сигнала.

Шумоподобность и самосинхронизируемость систем, основанных на хаосе, дают им потенциальные преимущества над традиционными системами с расширением спектра, базирующимися на псевдослучайных последовательностях. Кроме того, они допускают возможность более простой аппаратной реализации с большей энергетической эффективностью и более высокой скоростью операций.