Смекни!
smekni.com

Концепции современного естествознания 2 3 (стр. 29 из 111)

Считается, что проявление этих полей возможно при сверхвысоких энергиях, существовавших на ранних этапах эволюции Вселенной. По мере понижения энергии Великое объединение сначала распадается на сильное и электрослабое взаимодействия. При дальнейшем уменьшении энергии электрослабое взаимодействие разделяется на электромагнитное и слабое.

114

Физики пытаются построить еще более грандиозную теорию Суперобъединения. Она должна объединить все четыре фундаментальных взаимодействия, включая гравитационные силы. Данная теория строится на базе суперсимметрии и теории суперструн.

В основе нашего мира лежит симметрия. Поэтому квантовая физика предполагает, что должна существовать полная симметрия в описании вещества и поля, фермионов и бозонов. Иначе говоря, между этими частицами должно существовать полное физическое равноправие, они могут переходить друг в друга. Возможность такого перехода была открыта в 1970-е гг. и получила название

суперсимметрии.

Благодаря идее суперсимметрии новую жизнь получила теория струн (сегодня ее называют теорией суперструн), создателями которой стали английский физик М. Грин и американский физик Д. Шварц. Они попытались отказаться от уже привычного описания элементарных частиц как точечных объектов. Эта теория описывает некие протяженные объекты — струны. Хотя струны являются протяженными объектами, они одномерны и представляют собой отрезки либо со свободными концами, либо соединенными в виде восьмерки. Их размеры — примерно 10-33 см (планковская длина).

В данной теории понятие струны становится синонимом понятия микрочастицы или локализованного в пространстве объекта. Все частицы, которые мы знаем и, быть может, откроем в будущем, представляют собой определенное возбужденное состояние струны. Эти возбужденные состояния струн можно сравнить с набором гармоний, вызываемых колебанием скрипичной струны. Более высокие гармонии струны будут наблюдаться как новые частицы с массой больше массы предыдущих частиц. Полагают, что высшие гармонии струн рождались только на ранних стадиях эволюции Вселенной, когда энергии было в избытке. В обычных условиях существуют лишь состояния струн с наинизшей энергией. Введение понятия струны полностью исключает точечные представления из структуры микромира, и, по сути, эта теория сводит физику к геометрии очень сложных пространств.

В теории суперструн помимо очень сложных и громоздких вычислений есть еще некоторые сложности. В частности, теория предполагает, что на тех малых расстояниях, на которых существуют струны, должны проявляться дополнительные пространственные измерения. Есть варианты теорий для 11-мерного, 26-мерного и т.д. пространств. Эти лишние измерения, возможно, компактифицированы, т.е. свернуты в точки, замкнуты на себя и не распространяются в область макромира.

Теория суперструн ведет к некоторым нетривиальным следствиям. Так, согласно расчетам, среди порожденных струнами элементарных частиц должны быть гипотетические частицы — тахионы,

115

которые имеют мнимую массу и движутся со скоростью, большей скорости света.

Подтверждение или опровержение теории суперструн, возможность или невозможность создания теории

Суперобъединения — дело будущего. Над решением этих задач работают физики-теоретики, проверить экспериментально положения теории до сих пор не удалось.

В последние годы некоторые ученые начали обсуждать возможность существования еще одного типа взаимодействий — спинторсионного, фиксирующего и передающего информацию посредством торсионного поля (поля кручения). Существуют предположения, что эти поля обладают способностью передавать информацию практически без затрат энергии. Также считается, что именно торсионные поля обеспечивают все известные сегодня парапсихиче-ские феномены и биоинформационное

(энергоинформационное) воздействие. Если существование таких полей подтвердится, то это вновь приведет к пересмотру существующей физической картины мира.

5.3. Концепции пространства и времени в

современном естествознании

В процессе создания естественно-научной картины мира возникает вопрос о происхождении и изменении различных материальных предметов и явлений, об их количественных и качественных характеристиках. Физические, химические и другие величины непосредственно или опосредованно связаны с изменением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому для их описания в естествознании сформировались понятия пространства и времени.

Развитие представлений о пространстве и времени

Естественно-научные представления о пространстве и времени прошли длинный путь становления и развития. Уже в античности мыслители задумывались над природой и сущностью пространства и времени, однако их рассуждения носили стихийный и нередко противоречивый характер. Реальный эмпирический базис и строгое теоретическое описание представления о пространстве и времени обрели в ходе первой глобальной научной революции и классической науке Нового времени. Это было связано с развитием механики, которая описывала движение материальных тел, происходящее одновременно в пространстве и времени.

Вершиной классического естествознания стало творчество И. Ньютона. Именно Ньютон в своей знаменитой книге

«Математические

116

начала натуральной философии» ввел господствовавшие в науке до начала XX в. понятия пространства и времени, известные как абсолютное пространство и абсолютное время. Раскрывая сущность пространства и времени, Ньютон предложил различать два типа этих понятий: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) пространство и время.

Абсолютное пространство предстает как универсальное вместилище себя и всего существующего в мире. Оно безотносительно к чему бы то ни было внешнему, всегда остается одинаковым и неподвижным. Его можно попытаться представить в виде гигантского «черного ящика», в который можно поместить или убрать из него любые материальные тела.

Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению ее относительно некоторых тел и в обыденной жизни принимается за пространство неподвижное.

Абсолютное время предстает как универсальная длительность любых процессов во Вселенной. Оно само по себе, без всякого отношения к чему-либо внешнему протекает равномерно. Абсолютное время можно представить в образе гигантской реки, которая будет течь, даже если не будет никаких материальных тел.

Относительное время есть или точная, или изменчивая, постигаемая чувствами внешняя мера продолжительности. Она употребляется в обыденной жизни вместо истинного математического времени. Это — минута, час, день, месяц, год.

С точки зрения этой концепции абсолютные пространство, время и материя представляют три независимые друг от друга сущности.

Некоторые философы и ученые, не соглашаясь с Ньютоном, выступили с критикой его взглядов. Среди них был давний научный соперник Ньютона Г. Лейбниц. Он предложил реляционную концепцию пространства и времени, отказывающую им в самостоятельном, независимом от материи существовании. Лейбниц рассматривал пространство как порядок сосуществования тел, а время — как порядок отношения и последовательность событий. Иными словами, он говорил о неразрывной связи материи с пространством и временем.

Однако взгляды Лейбница не смогли переубедить ученых, уверенных в правоте Ньютона. Сформулированные им законы движения и закон всемирного тяготения, ставшие основой классической механики, основывались на понятиях абсолютного пространства и времени. Поэтому на некоторые недостатки идей Ньютона предпочли не обращать внимания. Лишь в середине XIX в., когда Максвеллом была создана теория электромагнитного поля, ученым пришлось признать возможность ошибки, задуматься о замене абсо-

117

лютного пространства и времени относительными. Тем не менее утверждение новых взглядов на пространство и время произошло только в начале XX в. после создания А. Эйнштейном теории относительности. Пространство и время стали пониматься как атрибуты материи, свойства материальных тел, существующие только вместе друг с другом и с движущейся материей.

Теория относительности

Теория относительности стала результатом обобщения и синтеза классической механики Ньютона и электродинамики Максвелла, между которыми с середины XIX в. возникли серьезные противоречия. Так, в механике господствовал классический принцип относительности Галилея, утверждавший равноправность всех инерциаль-ных систем отсчета, а в электродинамике — концепция эфира, или ненаблюдаемой среды, заполняющей мировое пространство и являющейся абсолютной системой координат. Иными словами, в электродинамике выделялась одна система координат, имевшая предпочтение перед всеми другими системами.

Ряд ученых попытались решить данное противоречие. Среди них был нидерландский физик X. Лоренц, который вывел математические уравнения, называемые сегодня преобразованиями Лоренца, для вычисления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на этих телах, в зависимости от скорости движения.