Смекни!
smekni.com

Проектирование систем электрификации участка Твердых сплавов ДОАО Ижевский инструментальный (стр. 2 из 7)


Глава 2. Электрификация производственных процессов на объекте проектирования

2.1 Литературный обзор и обоснование прогрессивных технологий на объекте проектирования

XXI век, век прогрессивных технологий, все больше изобретений появляется на рынке товаров и услуг. Появляются все большие возможности производит вредные работы какими либо машинами, роботами, что бы избавить человека от вредных факторов производства. Так и в курсовом проекте было решено внедрить прогрессивные технологии на участок «Твердых сплавов» для замеса порошков тяжелых металлов. Чтобы избавить человека от тяжкого труда ручного перемешивания порошков с его компонентами было принято решение установить «Смеситель» для замеса сыпучих материалов. На нашем рынке товаров и оборудования представлено огромное количество разнообразных мешалок смесителей и устройств для замеса.

В нашем случае при выборе устройства для замеса смеси порошковых материалов необходимо учитывать такие факторы, как вид установки (пневматический, электрический), тип установки (шнековый, конусный), габариты установки.

Сравним смесители конусного и шнековый типа.

Смеситель конусного типа обладает следующим принципом действия: Перемешивание загруженных компонентов происходит за счет вращения емкости вокруг оси, продукт при этом перемещается из одного конуса в другой и перемешивается. Вращение емкости с продуктом осуществляется электродвигателем с приводом. Имеет большие габариты, большой рабочий объем бака и относительно большое электропотребление. Так как на объекте проектирования количество замешиваемой смеси колеблется в пределах 60…100 кг , то конусный смеситель нам не подходит.

Смеситель шнековый имеет ряд преимуществ: низкое электропотребление; высокое качество смешиваемого материала; высокая производительность. Принцип работы: представляет собой цилиндрическую форму, внутри которой установлен шнек, приводящийся в движение от электродвигателя. Вращающийся шнек перемешивает смесь с помощью перфорированных лопастей. В процессе перемешивания в смеси образуется большое количество пузырьков воздуха, что негативно влияет на готовую продукцию.

Барабанный смеситель относится к области литейного производства, а именно, к устройствам для приготовления песчано-глинистых формовочных смесей. Смеситель содержит барабан, выполненный в форме полого корпуса с торцовыми крышками, загрузочным и разгрузочными окнами, внутри которого размещены рабочие органы смесителя и скребки, расположенные у внутренней стенки барабана. Новым в смесителе является то, что скребки закреплены на траверсе, установленной на стационарные опоры с возможностью поворота вокруг оси, смещенной относительно оси барабана. При этом, траверса оснащена противовесом, действие которого направлено в сторону противоположную вращению барабана, выполнена полой и снабжена каналами для подачи в барабан жидких компонентов.

Для замеса порошков твердых сплавов на объекте проектирования требуется смеситель малых габаритов, так как на участке твердых сплавов цеха 662 ДОАО «ИИЗ» смешивается от трех до шести марок порошков для разного рода инструмента. Количество смешиваемого порошка составляет от 50 до 90 кг за смену.

2.2 Выбор технологического оборудования

Исходя из вышеизложенного, для объекта проектирования подходит как никакой другой, смеситель барабанного типа (рисунок представлен на фигуре 1), принцип действия которого заключается в следующем:

От электродвигателя 8 посредством механической передачи 9 вращение придают одному из опорных тел 3 вращения, цилиндрической раме 4 и эластичному барабану 5. Затем во входную часть вращающегося эластичного барабана 5 подают сыпучий материал, например щебень, и вязкий материал, например битумную эмульсию. При вращении смешиваемый материал подхватывается боковой стенкой эластичного барабана 5, поднимается вверх и падает обратно. Благодаря тому, что барабан 5 установлен с наклоном оси в горизонтальной плоскости, материал смешивается и одновременно перемещается к его выходной части. При вращении барабана 5 некоторые из ударных элементов 7 осуществляют механическое воздействие на его боковую стенку путем нанесения удара, изменяя кривизну боковой стенки эластичного барабана 7 в плоскости, перпендикулярной оси вращения, что способствует отделению налипшего материала от боковой стенки и его дальнейшему участию в перемешивании.

2.3 Расчет вентиляции и теплоснабжения

2.3.1 Расчет теплоснабжения

Теплоносителем для обогрева участка является горячая вода, которая подается с центральной котельной. Система отопления устроена таким образом, магистральные трубопроводы горячей воды проложены у наружных стен под перекрытием.

Максимальный поток теплоты необходимый для обогрева участка можно определить по удельной относительной характеристики здания

,Вт (2.1)

где

- поток теплоты, расходуемый на отопление здания, Вт

- удельная относительная характеристика здания, Вт/(м3с)

- объем здания по наружному объему здания, м3

- средняя температура для основных помещений здания 0С

= 190С

- расчетная зимняя температура наружного воздуха0С

= - 310С

- поправочный коэффициент, учитывающий влияние расности температур на значение

(2.2)


Рассчитываем максимальный поток расходуемый на вентиляцию помещения.

(2.3)

где

- поток теплоты, расходуемый на вентиляцию здания, Вт

- удельная вентиляционная характеристика здания, Вт/(м3с)

- средняя температура для основных помещений здания 0С

= 190С

Для системы отопления используем стальные водогазопроводные трубы диаметром условного прохода 40 мм. Допустимая тепловая нагрузка которых 192 кВт. Устанавливаем радиаторы типа М-140АО, коэффициент теплопередачи которых равен 9,2 Вт/(м2·0С).

2.3.2 Расчет вентиляции

В цехе запроектирована местная вытяжная вентиляция и общеобменная приточно-вытяжная вентиляция. Вредные основные выделения на участке:

1. неорганическая пыль;

2. пары бензина;

3. тепловыделения.

Местная вытяжная вентиляция устраивается у оборудования, выделяющего вредности и служит для улавливания вредных веществ непосредственно у мест их выделения.

Общеобменная вытяжная вентиляция рассчитывается на воздухообмен, который определяется назначением помещения и зависит от характера и количества выделяющихся вредностей.

Общеобменная приточная вентиляция рассчитывается на компенсацию удаляемого вытяжными системами воздуха, а также для подогрева подаваемого.

Вентиляция, запроектированная в цехе, обеспечивает допустимые метеорологические условия и чистоту воздуха в рабочей зоне цеха, и предусматривается с искусственным и естественным побуждением. На каждом участке цеха предусмотрен свой выбор принципиального решения проектирования вентиляции в зависимости от назначения и выделяемых вредностей в помещениях.

Вентиляторы, приточные камеры, калориферы, фильтры подбираются, исходя из расчетного расхода воздуха, с учетом подсосов и потерь через неплотности.

Организация воздухообмена

Для обеспечения параметров воздушной среды помещений, установленных санитарными нормами и технологическими нормами, в помещении установленных системы вентиляции с естественным или механическим побуждением.

Системы естественной вентиляции запроектированы в случаях, когда пар воздушной среды в помещениях могут быть обеспечены при использовании гравитационного или ветрового давлений.

Произведем расчет естественной вентиляции производственного помещения для уменьшения содержания пара и вредных выделений в воздухе. Вытяжные короба расположим в местах, где непосредственно происходят выделения вредных веществ. Расчет начинаем с определения объемов вентилируемых помещений: