Пример Пусть
вычисляем по формуле (5)
Действительно
II вариант
Можно использовать другой подход:
, , ,
, , .a)
, q<1 - убывающая геом. прогрессия n и q-задаем сами.в)
, q>1 – возрастающая геом. прогрессия.Таким образом, можно рассматривать следующие модули сеток:
1) Равномерная сетка
.2) Квазиравномерная сетка (
…).3) Неравномерная по возрастающей геометрической прогрессии
.4) Неравномерная по убывающей геометрической прогрессии
.5) Среднеарифметический метод 3) и 4)
.Глава II. Одномерное уравнение переноса с переменными коэффициентами
2.1 Постановка задачи
Рассмотрим уравнение вида:
(1)удовлетворяющий начальным условиям
(2)и граничным условиям:
(3)Входные данные:
1)
l=1, T=1точное решение:
2)
точное решение:
3)
точное решение:
4)
точное решение:
Для решения задачи (1) – (3) используем различные разностные схемы, вернее, явную и неявную.
2.2 “Явные ” схемы
Явные схемы для нашей задачи используются тогда, когда p(x,t) > 0, (p0>0, pN>0) или p(x,t)<0, (p0<0, pN<0). На практике часто используют схему бегущего счета. В зависимости от знака функции p(x,t) используют правую или левую разностные схемы.
Итак, рассмотрим схему бегущего счета в обоих случаях.
1) p(x,t)>0, (p0>0, pN>0)
Разностная схема (правая) имеет вид
; (1′)
; (2′); (3′)
из (1′)
,где
.2) p(x,t)<0, (p0<0, pN<0)
В этом случае используется левая разностная схема
; (1″)
; (2″); (3″)
из (1′)
,где
.Таблица 1 Численное решение уравнения переноса с переменными коэффициентами схема бегущего счета “явная ” схема (правая разностная схема)
-------------kogda p0>0, pN>0-------------50sloy | |||
N priblijennoe tochnoe pogreshnosti | |||
0 | 0.10039200 | 0.10004559 | 0.00034641 |
1 | 0.10731313 | 0.10694264 | 0.00037049 |
2 | 0.11471141 | 0.11431517 | 0.00039623 |
3 | 0.12261970 | 0.12219596 | 0.00042375 |
4 | 0.13107319 | 0.13062004 | 0.00045315 |
5 | 0.14010945 | 0.13962487 | 0.00048458 |
6 | 0.14976865 | 0.14925048 | 0.00051817 |
7 | 0.16009374 | 0.15953968 | 0.00055407 |
8 | 0.17113063 | 0.17053820 | 0.00059243 |
9 | 0.18292837 | 0.18229495 | 0.00063342 |
10 | 0.19553941 | 0.19486220 | 0.00067721 |
11 | 0.20901984 | 0.20829583 | 0.00072401 |
12 | 0.22342957 | 0.22265555 | 0.00077402 |
13 | 0.23883258 | 0.23800523 | 0.00082736 |
14 | 0.25528740 | 0.25441310 | 0.00087431 |
15 | 0.27195211 | 0.27195211 | 0.00000000 |
Таблица 2. Численное решение уравнения переноса с переменными коэффициентами схема бегущего счета “явная ” схема (левая разностная схема)
-------------kogda p0<0, pN<0-------------- 50sloy | |||
N priblijennoe tochnoe pogreshnosti | |||
0 | 0.14715178 | 0.14715178 | 0.00000000 |
1 | 0.14242453 | 0.14232757 | 0.00009697 |
2 | 0.13785337 | 0.13766151 | 0.00019185 |
3 | 0.13343317 | 0.13314843 | 0.00028474 |
4 | 0.12915902 | 0.12878331 | 0.00037571 |
5 | 0.12502613 | 0.12456129 | 0.00046484 |
6 | 0.12102988 | 0.12047768 | 0.00055219 |
7 | 0.11716580 | 0.11652796 | 0.00063785 |
8 | 0.11342959 | 0.11270772 | 0.00072187 |
9 | 0.10981705 | 0.10901272 | 0.00080434 |
10 | 0.10632415 | 0.10543886 | 0.00088530 |
11 | 0.10294698 | 0.10198216 | 0.00096483 |
12 | 0.09968176 | 0.09863879 | 0.00104298 |
13 | 0.09652483 | 0.09540502 | 0.00111981 |
14 | 0.09347266 | 0.09227727 | 0.00119539 |
15 | 0.09052183 | 0.08925206 | 0.00126976 |
Текст программы смотри в приложении 1
2.3 Неявные схемы
В отличие от явной схемы неявные схемы используются для задачи (1) – (3) во всех случаях 1) p0>0, pN>0; 2) p0<0, pN<0; 3) p0>0, pN<0; 4) p0<0, pN>0.
Рассмотрим 2 различные разностные схемы:
1) Центрально- разностная схема.
2) Трехточечная схема с весом.
Все эти схемы решаются методом прогонки и все эти разностные уравнения, т.е. полученные при аппроксимации схемы, вернее, уравнения сводятся к виду:
(4)Коэффициенты Ai, Bi, Ci должны удовлетворять условиям:
(5)Коэффициенты B0 , C0 , F0, AN ,CN ,FN находятся из граничных условий. В данной задаче в зависимости от знака функции p(x,t) ставятся граничные условия и тем самым находятся наши коэффициенты. Рассмотрим все 4 случая:
1) p0>0, pN>0, u(l,t)=м2(t), (3′)
из уравнения (3′)
AN ,CN ,FN .B0 , C0 , F0 находятся из дополнительного условия, которая ставится на левом конце.
2) p0<0, pN<0, u(0,t)=м1(t), (3″) из уравнения (3″)
B0 , C0 , F0.AN ,CN ,FN находятся из дополнительного условия, которая ставится на правом конце.
3) p0<0, pN>0, u(0,t)=м1(t), u(l,t)=м2(t), (3″′)