Смекни!
smekni.com

Аналіз та розробка LED-драйвера (стр. 4 из 6)

DIP7 SO16 Найменування Функціональне призначення
1 1-4 GND Загальний вивід ІМС і джерела живлення
2 5 VDD Напруга живлення контролера, а також вихід зарядного струму для зовнішнього конденсатора при пуску ІДЖ
3 6 CONT Керуючий вхід, що забезпечує роботу контролера у двох режимах:
• установка граничного значення струму польового транзистора в комутуючому імпульсі;
• контроль вихідної напруги
4 7 FB Керуючий вхід для установки коефіцієнта заповнення комутуючих імпульсів
5 10 BR Захист від зниження сіткової напруги
7,8 13-16 DRAIN Вивід стоку польового транзистора

Джерела живлення, виконані на мікросхемі Viperl7N(D), із зовнішнім тепловідводом здатні забезпечити вихідну потужність ІДЖ до 12 Вт в інтервалі сіткової напруги 176...264 В и до 7 Вт в інтервалі 85...265 В. Якщо роль додаткового тепловідводу на друкованій платі виконує фольгірований майданчик площею приблизно 20 мм2, що перебуває в тепловому й електричному контакті з виводами 7,8 (DIP7) і 13 -16 (SO16) ІС, тоді потужність джерела живленні в стандартному й розширеному інтервалі сіткової напруги становить 9 і 5 Вт відповідно.

Рисунок 7 - Схема зворотноходового ІДЖ на основі ІС Viperl7

На рисунку 7 представлена типова електрична схема зворотноходового (Flyback) ІДЖ на основі ІС Viperl7. Контролер ШІМ, комутуючий транзистор, трансформатор, вихідний випрямляч, регульований стабілітрон U2 і оптоелектронний перетворювач, з'єднаний з виводом FB мікросхеми, утворюють замкнений контур регулювання вихідної напруги. При збільшенні вихідної напруги до необхідного значення відкривається стабілітрон U2, діод, що випромінює в оптоелектронному перетворювачі OPTO, впливає на перехід емітер-колектор фототранзистора, змінюючи його еквівалентний опір.

Контролер ШІМ регулює тривалість комутуючих імпульсів таким чином, щоб значення еквівалентного опору відкритого фототранзистора відповідало необхідній напрузі на навантаженні.

Щоб пояснити функціональні особливості контролера, розглянемо внутрішню архітектуру ІС, показану у додатку А, і властивості окремих її блоків.

Силовий комутатор в ІС виконаний на основі МДН-транзистора, що відрізняється особою електричною міцністю: пробивна напруга каналу стік-джерело становить не менш 800 В. Це гарантує безпечне функціонування приладу у всьому інтервалі вихідної потужності й швидкості зміни напруги на стоці du/dt. Опір каналу транзистора при температурі 25°С у включеному стані не перевищує 25 Ом. На кристалі транзистора сформований спеціальний резистивний елемент Rsens, що дозволяє ефективно відслідковувати максимальне значення струму в кожному імпульсі комутації. При зниженні живлячої напруги менше 8 В блок SUPPLAY&UVLO виключає транзистор, захищаючи його від випадкового включення.

Високовольтний генератор пускового струму Istart-up у якості джерела використовує напругу на виводі стоку (DRAIN). Запуск можливий тільки після того, як напруга на стоці перевищить граничне значення 80 В, тоді замкне вимикач HV_ON, і на підключений до виводу VDD конденсатор С3 почне надходити зарядний струм 3 мА. Після зростання напруги VDD понад 14 В вимикач HV_ON розмикається. Живлення мікросхеми здійснюватиметься від допоміжної обмотки трансформатора імпульсами, що випрямляються діодом D2 і згладжуються конденсатором С3.

Блок живлення й контролю напруги SIPPLAY&UVLO при збільшенні напруги живлення понад 14 В подає живлення на всі блоки ІС, а також формує ряд опорних напруг, необхідних для роботи вузлів мікросхеми. Автогенератор OSCILLATOR через логічний блок TURN-ON LOGIC, керуючий режимом формування комутуючих імпульсів, впливає на вхід S RS-Тригера, встановлюючи на виході Q рівень логічної 1.

Для зниження спектральної щільності перешкод, створюваних комутуючими імпульсами струму стоку в транзисторі й трансформаторі, центральна частота автогенератора примусово перебудовується з періодичністю 250 Гц у смузі 115 ± 8 (або 60 ± 4) кГц. При цьому загальна енергія центральної спектральної складової комутуючої частоти розподіляється серед гармонік з меншою амплітудою, що сприяє зниженню рівня електромагнітних завад.

Сигнал з виходу RS-Тригера підсилюється підсилювачем AMP, а потім надходить на затвор транзистора, відкриваючи його канал стік-джерело. У первинній обмотці імпульсного трансформатора й каналі транзистора виникає пилкоподібний струм. На датчику Rsense струм стоку у кожному комутуючому імпульсі транзистора перетворюється у пилкоподібну напругу, що прикладається до входу ШІМ, що неінвертує. Вбудований у мікросхему генератор струму Ifb, з'єднаний з виводом FB, створює на ньому деяку постійну напругу за рахунок резистивного дільника. Постійна напруга з виходу дільника впливає на вхід компаратора, що інвертує,. При досягненні пилкоподібною напругою рівня постійної напруги, заданої дільником, компаратор через логічний елемент OR1 і блок гасіння LEВ впливає на вхід R1 RS-Тригера, установлюючи на виході Q логічний. 0. Канал польового транзистора закривається, і на цьому формування комутуючого імпульсу завершується. Параметри дільника такі, що пікове значення струму стоку транзистора не перевищує 0,4 А.

Конструктор може зменшити рівень обмеження струму в інтервалі значень 0,4...0,1 А підключенням зовнішнього резистора Rlim = 5,1 - 100 кОм між загальним проводом і виводом CONT мікросхеми. У цьому випадку момент вимикання транзистора буде визначати логічний блок захисту від струмового перевантаження Over Current Protection (OCP) BLOCK і ОСР 1-компаратор.

Для виключення насичення магнітопроводу імпульсного трансформатора, а також зниження ризику ушкодження випрямного діода D3, запуск джерела живлення як при включенні, так і при повторному включенні після виникнення несправності здійснюється блоком SOFT START за допомогою функції «м'якого» старту. Протягом 8,5 мс обмеження струму стоку транзистора наростає від мінімального до максимально припустимого значення.

Спеціальний блок гасіння LEB (Leading Edge Blanking) протягом 0,3 мкс не реагує на викиди напруги на початку пилкоподібного сигналу, що обумовлені перехідними процесами в ІДЖ. Ці викиди можуть викликати передчасне обмеження тривалості комутуючого імпульсу й порушити нормальну роботу ШІМ-Компаратора.

По входу R2 RS тригера формування комутуючого імпульсу може бути перерване також у випадку спрацьовування блоків теплового захисту ОТР (Over Temperature Protection) або захисту від перевищення вихідної напруги OVP (Over Voltage Protection).

Блок теплового захисту THERMAL SHUTDOWN у мікросхемі виробляє сигнал ОТР при нагріванні кристала до температури понад 160°С. Автоматичне включення джерела живлення відбудеться після остигання кристала ІС до 130°С.

Блок захисту від перевищення вихідної напруги OVP LOGIC використовує трансформаторний зв'язок між вторинною й допоміжною обмотками, оскільки формовані ними напруги пропорційні числу витків. Тому для контролю вихідної напруги досить по входу CONT мікросхеми встановити резистивний дільник Rovp/Rlim і відслідковувати напругу на даному виводі. Контроль напруги здійснюється стробіруванням на інтервалі 0,5 мкс у кожному комутуючому імпульсі через 2 мкс після його фронту. Якщо ця напруга протягом чотирьох імпульсів підряд перевищить значення 3 В, логічний блок захисту OVP LOGIC сформує сигнал OVP, що перериває формування комутуючого імпульсу по входу R2 RS-Тригера. Стробірування напруги, її цифрова фільтрація, а також наявність у блоці OVP LOGIC лічильника числа перевищень різко знижують імовірність помилкового спрацьовування захисту OVP від випадкових викидів напруги.

При вимиканні мережного живлення ІДЖ напруга на виводі VDD зменшується до граничного значення 8 В, при цьому блок SUPPLAY&UVLO відключає шину внутрішнього живлення ІС, заряд СЗ від допоміжної обмотки припиняється й напруга на ньому знижується, оскільки комутуючий транзистор більше не включається. Напруга на конденсаторі С1 падає нижче 80 В, що унеможливлює повторне включення ІДЖ. Дана функції необхідна для запобігання можливого перезапуску пристрою після вимикання.

У мікросхему вбудований також блок аварійного захисту по струму другого рівня 2nd ОСР (Over Current Protection) LOGIC. При короткому замиканні витків в обмотках трансформатора, пробої випрямного діода D3, конденсатора С5 або замиканні в навантаженні струм через комутуючий транзистор досягає небезпечного значення 0,6 А, що виявляється спеціальним компаратором ОСР2.

Якщо кидок струму відбувся випадково, логічний блок 2nd ОСР LOGIK. ніяк на нього не реагує. Але якщо сигнал струмового перевантаження виявлений протягом двох комутуючих імпульсів підряд, транзистор буде виключений по входу R2 тригера. Під час відсутності комутуючих імпульсів напруга VDD знизиться до граничного значення 4,5 В, але сіткова напруга не відключена, і тому на виводі DRAIN присутня напруга 300 В. У результаті замкнеться вимикач HV_ON і ввімкнеться високовольтний генератор пускового струму Istart-up. що виробляє в такому випадку струм 0.6 мА замість звичайних 3 мА. Враховуючи, що заряд СЗ до напруги 14 В здійснюється від низького рівня 4,5 В, при ушкодженні одного з елементів пристрою короткочасні спроби перезапуску будуть відбуватися через тривалі часові інтервали; при цьому ІДЖ входить у режим перезапуску Hiccup Mode («цикання»), під час якого силові кола зазнають ударного навантаження, безпечного для ІС.

Як згадувалося вище, стабілізація вихідної напруги джерела живлення здійснюється регулюванням тривалості комутуючих імпульсів. При цьому змінюється напруга на виводі FB мікросхеми, яка створюється генератором струму Ifb. Інтервал напруги 0,5..3,3 В відповідає нормальному режиму роботи, для якого верхня границя інтервалу відповідає граничному значенню струму 0.4 А.

При спрацьовуванні аварійного захисту струму другого рівня, про що говорилося вище, вихідна напруга значна нижче нормальної, а напруга на виводі FB короткочасно змінюється в інтервалі 3,3...4,8 В, що відповідає режиму захисту від перевантаження - OLP (Over Load Protection).