Смекни!
smekni.com

Проект совершенствования организации ремонта машин в колхозе "Мир" Дебёсского района Удмуртской Республики (стр. 6 из 11)

Нормы времени на слесарные работы находятся по таблицам и используются некоторые простейшие формулы.

В норму времени на выполнение слесарных работ включают основное, вспомогательное, дополнительное и подготовительно - заключительное время, которое рассчитывается по формуле:

Тновдоп.пз/nшт.,(4.2)

где То - основное время, мин.;

Тв - вспомогательное время, мин.;

Тдоп. - дополнительное время, мин.;

Тпз - подготовительно-заключительное время, мин.;

nшт. - количество деталей.

Основное время - это время, в течении которого изменяют форму или размер детали в результате какого-либо вида обработки.

Вспомогательным называют время, затрачиваемое на установку детали, наладку оборудования, замеры и т.п.

Сумма основного и вспомогательного времени составляют оперативное время:

Топов, мин. (4.3)

Дополнительное время складывается из времени обслуживания рабочего места, перерывов на отдых и т.д.

Дополнительное время на слесарных работах принимают в пределах 8% от оперативного.

Сумма основного, вспомогательного и дополнительного времени составляет штучное время:

Тшовдоп., мин (4.4)

Подготовительно-заключительное время включает в себя получение наряда, инструмента, подготовка рабочего места, сдача выполненной работы. Это время находится по таблице 207 [11] в зависимости от степени сложности выполняемой работы. Таким образом, определяя норму времени, используя штучное время получили:

Тншпз/nшт, мин. (4.5)


Штучное время целиком включается в норму времени на изготовление каждой детали. Это время находится из таблицы [11] и рассчитывается норма времени на каждую операцию. Результаты расчётов приведены на листе..... формата А1.

Операция N2 по монограмме устанавливает длину рабочей части высевающей катушки. При использовании линейки с учётом размеров штучное время составляет:

Тшт=0,4 мин;

Тпз=3 мин;

Тн=0,4+3/24=0,5 мин.

4.3 Составление технологической документации

Технологические процессы проектируются применительно к ЦРМ или машинному двору в соответствии с требованиями стандартов ЕСКД и ЕСТД, а также с учётом дополнений, разъяснений, изложенных в руководящих технических материалах и отраслевых стандартах.

При проектировании технологических процессов при обкатке сеялки, проведение технического обслуживания и установления нормы высева разрабатывается следующая документация:

· титульный лист (Т.Л.) лист РМДП ;

· карта эскизов (К.Э.) лист РМДП ;

· операционная карта (О.К.) лист РМДП .

Технологическая документация оформляется на листе формата А1 [22].


5. КОНСТРУКТОРСКАЯ РАЗРАБОТКА. СТЕНД ДЛЯ ОБКАТКИ СЕЯЛОК ПОСЛЕ РЕМОНТА

5.1 Обоснование целесообразности и необходимости выполнения принятой конструкторской разработки

В связи с тем, ремонтно-обслуживающая база сельскохозяйственных предприятий нуждается в ремонтном оборудовании, в дипломном проекте рассматривается вопрос изготовления стенда по обкатке и регулировке сеялок в условиях ремонтной мастерской.

В данном проектировании в большей степени используются узлы и агрегаты с отработавших и вышедших из строя сельскохозяйственных машин, что существенно сказывается на стоимости стенда и простоте изготовления. Все основные сборочные единицы стенда заимствованы с сельскохозяйственных машин. Следовательно, работы по изготовлению данной конструкции сводятся к следующим операциям: изготовление рамы стенда, изготовление валов и подшипниковых узлов, сборка и установка всей конструкции.

Отсюда следует, что при небольшом количестве затрат можно изготовить стенд, который будет приносить значительную прибыль, т.к. в хозяйстве подобных стендов нет, а настройку сеялок производят в полевых условиях, что негативно сказывается на качестве посевов, а следовательно снижает урожайность зерновых культур.

5.2 Анализ существующих аналогичных конструкций

В настоящее время в сельском хозяйстве для регулировки сеялок используют следующие стенды: стенд для регулировки сеялок передвижных с приводом от вала отбора мощности трактора передаётся через карданную передачу и муфту к редуктору, который снижает частоту вращения и передаёт момент валу, на котором находится ведущий каток стенда; стенд стационарный с приводом от электродвигателя, где через ремённую или цепную передачу передаётся крутящий момент к редуктору, который также связан с валом, на котором находится ведущий каток стенда.

Также могут применяться стенды, имеющие небольшие отличия от вышеназванных стендов, или имеющие ряд усовершенствований, например, можно увидеть установленный на стенд мотор-редуктор, разъёмную муфту и т.д.

Все вышеуказанные стенды имеют ряд недостатков, одним из которых является подбор редуктора, т.к. необходимого может не оказаться в наличии, а на приобретение требуются дополнительно материальные затраты.

5.3 Описание разрабатываемой конструкции и её особенности

Работа стенда заключается в следующем: вращение оси электродвигателя передаётся через цепную передачу вариатору. Вариатор ремённый состоит из двух шкивов. Ведомый шкив , установленный на валу ведущего опорного ролика, через ведущий опорный ролик передаёт вращение на колесо сеялки.

Кинематическая схема привода стенда показана на рис. 5.1.

Кулачковая муфта 3 (рис. 5.1) служит для отключения привода от рабочего органа.

Обслуживание стенда заключается в ежедневном осмотре стенда, подтяжке ослабших креплений, регулировки натяжения цепи привода.

Вариатор 1 (рис. 5.1) кроме функции регулирования, играет роль предохранительной муфты. В корпусе шкива вариатора имеется срезная шпилька, рассчитанная на определённое сопротивление передаче вращения.


Рисунок 5.1 Кинематическая схема привода:

1 - вариатор; 2 - электродвигатель; 3 - кулачковая муфта;

4 - ведущее опорное колесо; 5 - ведомое опорное колесо.

Привод и крепление узлов и деталей стенда в основном заимствуют со списанной сельскохозяйственной техники и машин. В частности, заимствованными узлами в конструкции являются: вариатор оборотов (скорости вращения), кулачковая муфта. Узлы заимствованы соответственно с жатки (регулятор оборотов мотовила или подборщика) комбайна СК-5М и с выгрузного зернового шнека комбайна СКД-6. Вариатор применён без переделок, кроме регулировки (гидравлическая заменена на механическую). Сборочный чертёж механизма регулирования приводится на листе РМДП .

Кулачковая муфта берётся без фрикционных дисков. Муфту при помощи шести болтов крепят к опорному катку.

Опорный каток изготавливается из тонкостенной трубы, диаметром 300мм, длиной 400мм. С торцов заваривается листом из железа толщиной 3мм. На торцах просверливаются отверстия под крепления для подшипниковых узлов и кулачковой муфты. Внутри катка проходит вал, вращающийся на подшипниках. Сам каток вращается на подшипниках относительно вала.

При включении кулачковой муфты, каток фиксируется с валом и они вращаются как одно целое.

Рисунок 5.2 Опорный каток с узлами:

1 -опорный каток; 2 -кулачковая муфта; 3 -подшипниковый узел катка; 4 -подшипниковый узел вала; 5 - вал; 6 -болт крепления муфты к катку; 7 -болт крепления подшипникового узла к раме; 8 -крепление подшипникового узла катка к корпусу катка; 9 -рама.

Ведущая полумуфта кулачковой муфты перемещается и фиксируется от проворачивания относительно вала при помощи двух шпонок, одна из которых служит для фиксации, другая для перемещения по валу.

Один из подшипников узлов опорного катка вмонтирован в ведомую полу муфту при помощи втулки и стакана.

Рама стенда состоит из сварных соединений, уголков на которых монтируются рамы катков. Основание двигателя приварено к одной из рам катков и нижней частью крепится к раме стенда. Рама катка крепится к раме стенда при помощи болтов, для чего внутрь рамы стенда привариваются с подтаем нарезные гайки. Рама стенда при помощи анкерных болтов, залитых в фундамент, крепится гайками.

Для крепления подшипниковых узлов в раме просверливают отверстия под диаметр болта.

5.4 Кинематический расчёт и расчёт основных деталей конструкции

5.4.1 Определение требуемой мощности электродвигателя

Искомую мощность электродвигателя определяем по формуле [12]:

P=F×n/h, квт (5.2)

где F - сила тяги, необходимая для вращения колёс сеялки, H;

n - максимальная скорость движения сеялки, м/с;

h - коэффициент полезного действия привода

h=h1×h2×h34, (5.3)

где h1 - коэффициент полезного действия цепной передачи, 0,96

h2- коэффициент полезного действия ремённой передачи, 0,98

h3- Коэффициент полезного действия подшипниковых узлов в

валах, кратность обозначает количество опор, где возможны

потери мощности на трение, 0,99.

Сила тяги F=1410H [24]. Скорость движения сеялки при севе по агротребованиям 8...12км/ч или 2,2...3,3м/с. Расчёт производится на максимальной скорости

h=0,96×0,98×0,994=0,89.

P=1410×3,3/0,89=5,2кВт


5.4.2 Выбор электродвигателя

При выборе электродвигателя учитывается определённая по расчётам мощность.

Мощность выбранного для привода электродвигателя должна быть не менее расчётной.

В ряду нестандартных мощностей электродвигателей выше расчётной мощности подходит электродвигатель мощностью P=5,5кВт с синхронной частотой вращения nн=750 мин-1.

При больших частотах вращения возникают затруднения с реализацией передаточного отношения. Двигатель марки ЧА132М8УЗ с частотой вращения, с учётом скольжений, nc=720 мин-1.

5.4.3 Расчёт передаточного отношения