Смекни!
smekni.com

Этапы развития логики как науки и основные направления современной символической логики (стр. 6 из 16)

Шрёдер формулирует правила (или требования) научной клас­сификации:

1. Между родом и суммой его видов должно быть тождество.

2. Все виды должны быть дизъюнктивными, т. е. должны ис­ключать друг друга и попарно в произведении давать 0.

3. Для расчленения рода на виды должно быть одно основание. Используя отрицание. Шредер показал, как классифициру­емый род делится на виды и подвиды.

В логическом исчислении, доведенном до наибольшей просто­ты, Шредер признает три основных действия: сложение (трактуя его как нестрогую дизъюнкцию), умножение и отрицание. Однако вычитание он считает небезусловно выполнимой операцией.

Автор данного учебника признает вполне приемлемой в логике классов операцию вычитания классов. Но понимает ее принципи­ально иначе, чем Буль и Шредер. Буль и Шредер считали, что в разности а - bb должно полностью входить в а, если же b > а или а и b - несовместимы, то операция вычитания невыполнима. В от­личие от Буля и Шредера мы допускаем возможной (т. е. выполни­мой) разность всяких двух классов а и b, из которых b может и не быть частью а; в качестве следствий мы учитываем случаи вычи­тания, когда классы а и b являются пустыми или универсальными.

Наиболее известные работы английского логика Стенли Джевонса (1835-1882) - “Principles of Science, a Treatise on Logic and Scientific Method” (London, 1874) и “Elementary Lessons in Logic, Deductive and Inductive” (London, 1870).

В качестве логических операций Джевонс признавал конъюнк­цию, нестрогую дизъюнкцию и отрицание и не признавал обрат­ных логических операций - вычитания и деления. Классы он обозначал буквами А, В, С..., а их дополнения до универсального класса, обозначаемого 1, или их отрицания -соответственно кур­сивными буквами а, b, с... 0 обозначает у него нулевой (пустой) класс; связка в суждении заменяется знаком равенства.

Большое значение Джевонс придавал принципу замещения (или подстановки), который формулируется им так: если только существует одинаковость, тождество или сходство, то все, что верно об одной вещи, будет верно и о другой. Этот принцип игра­ет важную роль в умозаключении. Для обозначения отношения одинаковости (или тождества) Джевонс употребляет знак “ = ”.

Обозначив положительные и отрицательные термины соответ­ственно через А и а, В и b, Джевонс записывает закон непротиворечия как Аа = 0. Критерием ложности заключения, по Джевонсу, является наличие в нем противоречия, т. е. утверждения и отрицания одного и того же положения, что записывается, напри­мер, как наличие Аа, Вb, АВСа.

Джевонс считал, что утвердительные суждения можно пред­ставлять в отрицательной форме. Но он напрасно категорически заявлял, что имеются сильные основания в пользу того, чтобы употреблять все предложения в их утвердительной форме, а раз­личие (т. е. отрицательные суждения) неспособно быть основа­нием умозаключения. Джевонс не отрицал, что утверждение и от­рицание, сходство и различие, равенство и неравенство представ­ляют пары одинаково основных отношений; но утверждал, что умозаключение возможно только там, где прямо находится или подразумевается утверждение, сходство или равенство, словом, какой-нибудь вид тождества.

Согласно законам диалектики, тождество и различие являют­ся двумя сторонами единого предмета или процесса. Отражение отношений тождества и различия, имеющихся в самих предме­тах действительного мира, находит свое выражение и в мышле­нии в формах умозаключений. Поэтому отбросить различие, выражающееся в отрицательных суждениях, и все свести только к тождеству, выражающемуся в утвердительных суждениях, нель­зя, да и нет в этом необходимости. Единство противоположно­стей - тождества и различия - неразрывно.

Интересны и оригинальны взгляды Джевонса на категориче­ский силлогизм с двумя отрицательными посылками. Джевонс утверждает, что его принцип умозаключения ясно отличает слу­чаи, когда оно оказывается правильным, от тех случаев, когда оно неправильно. Он приводит пример умозаключения:

Все, что не металлично, не способно к сильному магнитному влиянию.

Уголь не металличен.

Уголь не способен к сильному магнитному влиянию.

Здесь из двух отрицательных посылок получается истинное отрицательное заключение. Джевонс считает; что там, где возможно подставлять тождественное вместо тождественного, допустим вывод заключения из двух отрицательных посылок.

Джевонс внес значительный вклад в алгебру логики, особенно в проблему отрицания классов и отрицательных суждений.

Следующий этап в развитии математической логики связан с именем русского логика, математика и астронома Платона Сергеевича Порецкого (1846-1907). Его работы' существенно обобщают и развивают достижения Буля, Джевонса и Шредера.

Анализируя понятия, Порецкий различает две формы: форму, обладающую данным признаком, обозначаемую буквами а, b, с..., и форму, им не обладающую, обозначаемую а, b,с…, и т. д.2 Фор­мы совместного обладания или необладания несколькими при­знаками записывает так: a,a1 ,b,b1 (без особого знака между бу­квами). Современное пересечение классов Порецкий называет операцией реализирования (умножения), обозначая ее “ • ”, а опе­рацию объединения классов - абстрагированием (сложением), обозначая ее “ ? ”, т. е. знаком вопроса; 0 и 1 обозначают пустой класс и универсальный. Порецкий вводит операцию отрицания классов (отрицание а обозначается через а1,) - это дополнение к классу а. Для каждого данного а его отрицание, т. е. о,, может быть различно. Это определяется избранным универсальным клас­сом. Так, если за 1, т. е. универсум, принять англичан, а за а класс артистов, то а1, означает англичан-не-артистов, но если 1 обозна­чает класс людей, то a1, обозначает людей-не-артистов и т. д.

Заслуга Порецкого в том, что он рассматривал логические опе­рации не только над отдельными логическими классами, но и над логическими равенствами. Порецкий считает, что если два класса состоят из одних и тех же предметов, т.е. имеют равные объемы и могут отличаться только формой, то они равны между собой. Со­единяя равные классы знаком “ = ”, мы получаем логическое равенство. Равенством логических классов русский логик назы­вает полную их тождественность, т. е. одинаковость их логичес­кого содержания, считая, что все их различие может состоять только в способе их происхождения. Примером такого равенст­ва является закон де Моргана: (m + n), = т1 • n1. Если классы а и b равны, то и их отрицания, т. е. классы а и b, также равны. По его мнению, отрицание всякого равенства приводит к новому равенству, тождественному первоначальному.

По мнению Порецкого, операция отрицания неприменима к системам равенств. К соединению двух и более равенств в одно новое равенство применимы лишь две логические операции: сло­жение и умножение отдельных частей равенств, причем предварительно каждое отдельное равенство может быть в слу­чае надобности заменено его отрицанием.

В созданной им теории логики Порецкий подчеркивал взаи­мосвязь двух проблем: выведения следствия из заданной систе­мы посылок и нахождения тех посылок, из которых данное логическое равенство может быть получено в качестве следствия. Несколько подробнее остановимся на методе нахождения всех простых следствий из данных посылок, который в теории логи­ки получил название метода Порецкого - Блэйка (его предложил американский математик Блэйк' на основе работы Порецкого).

Простым следствием из данных посылок называется дизъюнк­ция каких-либо букв или их отрицаний, являющаяся логическим следствием из этих посылок, и притом таким, которое не погло­щается никаким более сильным следствием такого же вида. (Мы говорим, что а сильнее b, если из а следует b, но из b не следует а). Все простые следствия из данных посылок можно получить, выполнив преобразования следующих пяти типов:

1) привести конъюнкцию посылок к конъюнктивной нормаль­ной форме (КНФ). КНФ есть конъюнкция из дизъюнкции элемен­тарных высказываний или их отрицаний, эквивалентная данно­му выражению, т. е. если есть импликация, то ее надо заменить на дизъюнкцию по формуле (а → b=

b);

2) произвести все операции “отбрасывания”, т. е. члены вида a

x

(или а • х •
) можно исключить, так как этот член тождественно истинен;

3) использовать законы выявления, т. е. формулы

ах ^ b

= ах ^ b
^ аb; или ax
b
= ax
b
ab;

4) произвести все “поглощения” на основании законов поглощения:

а ^ (a

b) = а и а
(а ^ b)= а;