Z =
Для случая оптимизации потерь критерий будет таким:
Z =
#Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма l = 0,6. Во второй нужно внести значения наибольших элементов всех строк, умноженных на уровень оптимизма 1 – l = 1 – 0,6 = 0,4 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:
Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.
В нашем случае наибольший элемент в добавленном столбце 7,2 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения средств первый проект.
Ответ А1 .
Раздел "Теории принятия решений" в условиях противодействия называется теорией игр. А так как в основном условия задач в "Теории принятия решений" задаются в виде матриц, то рассматриваемые конфликтные ситуации называются матричными играми. В матричных играх состояниями В1, В2, …, Вnуправляет не беспристрастная природа, а активный противник, преследующий сугубо свои цели.
ЛПР, управляющий своими стратегиями (ходами) А1, А2, …, Аn, и его противник, управляющий стратегиями (ходами) В1, В2, …, Вnв данной ситуации называются игроками.
Элементы матрицы аij , заданной в условии, называются выигрышами(платежами) игрока А. А вся матрица называется матрицей платежей.
Далее возможны два случая. Если в матричной игре задана одна платежная матрица, то естественно предположить, что выигрыши первого игрока будут являться проигрышами второго игрока. Такая антагонистическая ситуация называется матричной игрой с нулевой суммой. Цель игры для первого игрока (ЛПР) – побольше выиграть, а для второго игрока – поменьше проиграть. Иными словами, цельюигры является определение оптимальной стратегии для каждого игрока – такой стратегии, при которой выигрыш первого игрока будет максимальным, а проигрыш второго игрока будет минимальным.
Однако, такая ситуация бывает не всегда. Зачастую в жизни ваш противник преследует сугубо свои цели, определенные своими выигрышами. В этом случае матричная игра задается двумя платежными матрицами. Или для краткости элементы одной платежной матрицы состоят из двух чисел: (аij, bij). Такая ситуация называется матричной игрой с ненулевой суммой. И для первого и для второго игроков цель игры – побольше выиграть.
Очевидно, что рассмотренная матричная игра предполагает, что каждый игрок делает только по одному ходу. Естественно, что многие конфликтные ситуации предполагают по нескольку ходов каждого игрока. Такие игры рассматриваются пошагово и решаются методами динамического программирования. На каждом отдельном шаге такая игра рассматривается как игра с одним ходом.
Матричные игры для двух игроков с нулевой и ненулевой суммой достаточно хорошо изучены и для них разработана теория оптимального поведения игроков.
Однако в жизненной практике в конфликтных ситуациях зачастую участвуют более чем две стороны. Чем больше игроков – тем больше проблем. Такие игры менее изучены и здесь есть просторное поле для новых фундаментальных научных исследований.
Несмотря на несколько легкомысленное звучание основных терминов, теория игр является строго научной дисциплиной с точными математическими выкладками.
На протяжении всего своего исторического пути развития человечество ежедневно сталкивается с конфликтными ситуациями: политическими, военными, экономическими, социальными и прочими, которые проявляются как в глобальных, так и в малых (вплоть до личных) формах. И если бы Человеку хватило бы ума в конфликтных ситуациях пользоваться не силой, не надеждой на "авось", а математикой, то жизнь наверняка была бы другой. Будем надеяться, что новое поколение, усвоив курс "Исследование операций" -, изменит жизнь к лучшему!
Итак, рассмотрим игру, в которой ЛПР противостоит "думающий" противник.
Возможны такие случаи:
1) Ходы игроками делаются одновременно.
2) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, не имеет информации о ходе противника.
3) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, знает о ходе противника.
4) Первым ходит игрок 1, но игрок 2 не имеет информации о ходе противника.
5) Первым ходит игрок 1, но игрок 2 знает о ходе противника.
Очевидно, что случаи 1), 2) и 4) идентичны – никто из игроков не знает о ходе противника ничего.
Рассмотрим случай 3). Так как ЛПР имеет полную информацию о ходе противника, то мы имеем ситуацию принятия решения в условиях полной определенности. Как уже отмечалось выше, такими задачами занимается математическое программирование.
Рассмотрим случай 5). Так как ЛПР ходит первым, то его противник наверняка выберет самую худшую для ЛПР стратегию. Поэтому в такой ситуации ЛПР необходимо принимать решение о своем ходе согласно принципу наибольшей осторожности, т.е. согласно принципу максимина. Это утверждение однозначно, легко математически доказывается и не должно подвергаться сомнению ни в каких жизненных ситуациях.
Итак, содержательны по своей сути только случаи 1), 2) и 4), которые сводятся к одному случаю. Это как мы видим, принятие решения в условиях неопределенности.
Рассмотрим парную конечную антагонистическую игру. Пусть игрок А располагает mличными стратегиями, которые обозначим А1, а2 ..., Аm. Пусть у игрока В имеется nличных стратегий, обозначим их В1, В2, ,.., Вn. Говорят, что игра имеет размерность mх n . В результате выбора игроками любой пары стратегий Аiи Вj(i = 1,2 …, m; j = 1,2, …, n).
Однозначно определяется исход игры, т.е. выигрыш аijигрока А (положительный или отрицательный) и проигрыш (-аij) игрока В . Предположим, что значения аijизвестны для любой пары стратегий (Аi Вj). Значения этих выигрышей заданы в платежной матрице
Строки этой таблицы соответствуют стратегиям игрока А , а столбцы – стратегиям игрока В .
С помощью хорошо нам знакомого принципа максимина найдем гарантированный наибольший выигрыш для игрока А:
Найденное число a называется нижней ценой игры.
Стратегия, соответствующая максимину, называется максиминной стратегией – она будет оптимальной стратегией игрока А.
Посмотрим на эту ситуацию с точки зрения второго игрока: ему необходимо уменьшить свои потери. В таком случае критерию максимина превратится в минимаксный и гарантированный наименьший проигрыш для игрока В будет таким:
Найденное число в называется верхней ценой игры
Стратегия, соответствующая минимаксу, называется минимаксной стратегией – она будет оптимальной стратегией игрока В.
Причем, для нижней и верхней цены игры всегда справедливо неравенство:
Если нижняя и верхняя цены игры совпадают, то общее значение верхней и нижней цены игры a = в = n называется чистой ценой игры, или ценой игры. Элемент платежной матрицы, в котором достигается чистая цена игры, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом). Найденные оптимальные стратегии игроков А и В в данном случае называются чистыми стратегиями.
Матричная игра с платежной матрицей, имеющей седловую точку, называется игрой, разрешимой в чистых стратегиях. При этом очевидно, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Оба игрока находятся в "положении равновесия", из которого не выгодно выходить каждому.
Рассмотрим числовой пример.
Пусть имеем игру с платежной матрицей:
Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.
Дополним исходную матрицу справа еще одним столбцом, а снизу – еще одной строкой. В них будем заносить значения минимальных элементов каждой строки и значения максимальных элементов каждого столбца соответственно:
Найдем нижнюю цену игры. Выигрыш игрока А:
a =
= 4он достигается в третьей строке.Найдем верхнюю цену игры. Выигрыш игрока В:
в =
= 4 он достигается во втором столбце.Как видим, выигрыши игроков совпадают: a = в = n = 4 , значит у матрицы имеется седловая точка. А значит, у данной матричной игры имеется пара оптимальных чистых стратегий А3В2 . Цена игры n = 4.
Но такое бывает далеко не всегда.
Если платежная матрица не имеет седловой точки, то
. А значит . Такая игра в чистых стратегиях не разрешима. Первый игрок в таком случае будет стремиться увеличить свой выигрыш, а второй – уменьшить свой проигрыш. Поиск такого решения приводит к применению сложной стратегии, состоящей в случайном применении двух и более чистых стратегий с определенными вероятностями: