Смекни!
smekni.com

Вибір оптимальних режимів як метод підвищення стійкості і жорсткості технологічної системи при чорновому обробленні на верстатах з числовим програмним керуванням (стр. 2 из 3)

Передавальна функція процесу різання подана добутком геометричної і фізичної складових

, (2)

де К0 – питома сила різання; ТР – стала часу стружкоутворення.

Геометрична складова визначає площу зрізу. Розклад сил різання в ряд Фур’є за часом та застосування його першого члена дозволили для кінцевої фрези в загальному вигляді отримати формулу

,(3)

де R – радіус фрези; ω – кут нахилу гвинтової лінії зубця фрези; ψн, ψк, ψо, ψω – кут початку, кінця стикання, кут повороту торцевого перетину зубця фрези та максимальний поворот перетину зубця в межах ширини фрезерування;
N – кількість зубців фрези; М1, М2 – кут кінця та початку стикання гвинтового зубця фрези на ширині фрезерування; A, B, C – коефіцієнти (враховують конструкцію фрези та вид фрезерування); Кr – коефіцієнт радіальної сили різання; g(ψ, ψ0) – функція, що визначає стикання різальної кромки із заготовкою («1» - якщо умова правильна, «0» - якщо умова неправильна);

, (4)

де Rp – кількість пластин у фрезі; r – номер пластини; Pi – список номерів пластин, які належать i -му зубцеві фрези; ψrmin, ψrmax - кутове зміщення r-ї пластини.

Різання кількома зубцями враховується шляхом підсумування зубців протягом циклу контакту. Отримання геометричної складової для фрез інших конструкцій проводиться шляхом спрощення залежностей (3), (4).

Фізична складова визначає силову взаємодію леза зі стружкою при прямокутному вільному різанні за В.А. Кудиновим.

Відомо, що величина сили різання суттєво залежить від товщина зрізу та швидкості різання. Проведені автором експериментальні дослідження показали значний вплив товщини зрізу та швидкості різання на сталу часу стружкоутворення. Тому нелінійні залежності у моделі запропоновано врахувати шляхом їх опису емпіричними залежностями

,
,(5)

де A – проекція сили різання A(z,y)≥0; B– показник степені B(z,y)≥0; ZV – показник степені ZV(z,y)≥0; XTp – показник степені XTp≥0; ZTp – показник степені ZTp≥0.

Виходячи з виразу для лінійної системи, передавальна функція ТС може бути подана у вигляді:

,
,(6)

де δ(w)– функція переміщення ТС вздовж осі верстата; Р(w) – проекція сили різання на ось верстата. Припустивши також, що взаємовплив осей незначний, отримаємо Gxy=Gyx=0.

Оскільки запропонована модель є нелінійною щодо швидкості різання та товщини зрізу, то неможливо застосувати алгоритм, розроблений Y. Altintas. Тому для аналізу динамічної стійкості процесу кінцевого фрезерування в умовах частоти обертання шпинделя та деякого параметра, що входить у модель (наприклад, ширина або глибина фрезерування), розроблений власний ітераційний алгоритм, що реалізовує метод D-розбиття для наперед лінеаризованого стосовно часу характеристичного рівняння. Він полягає в послідовній перевірці кожної точки області режимів різання з деяким кроком на наявність автоколивань та за отриманими даними побудови межі динамічної стійкості.

Запропоновано для визначення питомої сили різання і сталої часу стружкоутворення скористатися імітаційним моделюванням процесу прямокутного вільного різання в 2-D постановці на основі методу скінченних елементів. Застосовувалася програма OCFEM, розроблена на кафедрі «Технологія машинобудування, верстати та інструменти», СумДУ. Визначення зазначених параметрів відбувається за діаграмою зміни проекцій сили різання при врізанні із заданою товщиною зрізу та апроксимації цієї залежності аналітичним виразом методом найменших квадратів. При цьому вихідними даними є режими різання, геометрія інструменту, властивості інструментального та оброблюваного матеріалів, модель тертя, модель матеріалу, що визначалася з діаграми розтягнення за ГОСТом 1497.

Проведене дослідження впливу товщини зрізу, фаски зносу по задній поверхні, швидкості різання, коефіцієнта тертя, переднього та заднього кутів інструменту на сталу часу стружкоутворення показало, що лише швидкість різання, коефіцієнт тертя, товщина зрізу та співвідношення a/r значно впливають на величину цього показника. Це підтверджує доцільність врахування нелінійних залежностей цього показника від товщини зрізу та швидкості різання при моделюванні динамічної стійкості ТС до автоколивань.

Для практичної реалізації динамічної моделі фрезерування необхідно визначити податливість тієї ТС, для якої виконується моделювання процесу. На сьогодні існують спроби врахувати тільки шпиндель ТС, однак оскільки на даний час стан верстата невідомий, то функція динамічної податливості підлягає експериментальному визначенню.

Для визначення функції динамічної податливості запропоновано використати метод ударного збурення, загальна методика реалізації якого регламентується ГОСТом 7626-5-99. Згідно з цією методикою в заданій точці системи прикладається збурююча сила амплітудою Р протягом часу

та реєструється переміщення системи
, яке було викликане цією силою. Тоді функція динамічної податливості визначається за формулою
, де δ(w) –амплітудний спектр переміщення ТС; P(w) – амплітудний спектр модуля сили різання.

Ударне збурення запропоновано реалізовувати за допомогою зрізання каліброваного штифта зубцем фрези. Вимірювання зміни відстані (зазора) між заготовкою (пристроєм, столом верстата) та інструментом запропоновано здійснювати індуктивним датчиком відстані, який закріплюється на заготовці.

Отриманий спектр динамічної податливості апроксимується виразом

, (7)

де s – оператор Лапласа; n – кількість гармонік G, що апроксимуються; α – прискореність вздовж осі X [м/(Н∙с2)]; β – рухливість вздовж осі X [м/(Н∙с)]; ζ – коефіцієнт демпфування ТС; ωс – частота власних коливань ТС [с-1].

Аналіз функції динамічної податливості, отриманої для 9 різних умов та зіставлення з власними частотами отриманими за допомогою CosmosWorks показали приблизну рівність динамічної податливості інструменту, шпинделя, шпиндельної бабки, пристосування та деталі. Таким чином, для достовірної оцінки динамічної стійкості процесу в заданих умовах потрібно враховувати функцію динамічної податливості, яка містить всі елементи ТС.

3 Дослідження динамічної стійкості ТС на основі аналізу сигналу акустичного випромінювання

Критерій динамічної стійкості процесу фрезерування кінцевими фрезами до автоколивань доцільно сформулювати таким чином: процес кінцевого фрезерування динамічно стійкий до автоколивань у тому разі, якщо амплітуда коливань в діапазоні частот від 150 до 3000 Гц на частотах, не кратних частоті зустрічі зубців фрези із заготовкою, не більше амплітуди коливань на частотах, кратних частоті зустрічі зубців фрези із заготовкою. Тоді, якщо критерій виконується, будемо говорити про динамічно стійкий режим автоколивань, у протилежному разі – про динамічно нестійкий режим автоколивань.

Для перевірки запропонованого критерію були отримані спектри сигналів АВ для різних умов оброблення шляхом запису сигналу за допомогою мікрофона. Для зазначених умов також отримані поверхні різання шляхом миттєвого зупинення процесу .

Аналіз отриманих спектрів за різних умов фрезерування показав, що інтенсивність АВ суттєво зростає або на низьких частотах близько 20-130 Гц , що пов’язане з суттєвим рівнем вимушених коливань в результаті удару зубців фрези по заготовці, або на частотах близько 1,5-5 кГц . Згідно з критерієм у першому випадку ТС є динамічно стійкою до автоколивань, при цьому поверхня різання не має вібраційного сліду від коливань . У другому випадку згідно з критерієм ТС є динамічно нестійкою до автоколивань, це також підтверджує і поверхня різання, яка має добре помітний вібраційний слід. За допомогою даного сліду шляхом підрахунку кількості западин, було визначено, що частота коливань становила 1723 Гц, а амплітуда коливань визначена, шляхом вимірювання глибини западин, становила 0,13 мм .

4 Порівняння аналітичних залежностей

Наведена адекватність запропонованої математичної моделі аналізу динамічної стійкості ТС шляхом порівняння діаграм динамічної стійкості, які були розраховані для випадку оброблення сталі 45 на верстаті 6Р13Ф3 з системою ЧПУ 2С42-65 кінцевою фрезою зі змінними непереточуваними пластинами МС137 з результатами експерименту в діапазоні частот обертання шпинделя від 630 до 2000 об/хв, глибин фрезерування від 5 до 40 мм, ширини фрезерування від 10 до 40 мм при подачі 0,12 мм/об.