Смекни!
smekni.com

Автоматизированная система управления компрессорной установки (стр. 1 из 22)

ВВЕДЕНИЕ

Компрессорные машины - важные виды продукции машиностроения. Они применяются во многих отраслях народного хозяйства: химической, нефтяной, газовой и машиностроительной, на транспорте, в металлургии, геологии, строительстве, агропромышленном комплексе, а также - в новых перспективных направлениях техники и технологии, в частности, в космонавтике, робототехнике, производстве искусственного топлива и др. Сердцем любой холодильной и криогенной установки является компрессор. От эффективности и надежности его работы зависят КПД и долговечность комплекса в целом.

В настоящее время в России и в странах СНГ эксплуатируется свыше 500 тысяч промышленных компрессоров, которые вместе с вентиляторами и насосами потребляют около 20% вырабатываемой в стране электроэнергии. Производством и ремонтом компрессоров занято свыше 1 млн. человек. В связи с этим вопросы повышения технического уровня компрессоров и холодильных установок, в частности, их эффективности и надежности, имеют важное народнохозяйственное значение и поэтому являются основными в деятельности многих научно-исследовательских и конструкторско-технологических организаций, а также промышленных предприятий отрасли холодильного и компрессорного машиностроения.

Основными направлениями развития опытно-конструкторских и научно-исследовательских работ являются:

1. Дальнейшая разработка и создание гибких унифицированных рядов компрессоров общего назначения, на основе которых должны создаваться специальные компрессоры по единичным и малым заказам, совершенствование систем регулирования для расширения диапазона эффективной работы.

2. Дальнейшая разработка и внедрение моноблочных и блочных компрессорных установок с максимальной степенью заводской готовности и установок с воздушным охлаждением, в том числе устанавливаемых на открытых площадках.

3. Проведение мероприятий, направленных на экономию материальных и энергетических ресурсов путем повышения быстроходности компрессоров, совершенствования конструкций теплообменной аппаратуры, использования вторичных энергоресурсов, внедрения прогрессивных технологических процессов и новых материалов, в том числе пластмасс и керамики.

4. Разработка на основе функциональных исследований новых принципов и схем сжатия и перемещения газов, в частности, водорода с использованием гидридов металлов, наддувных волновых компрессоров.

5. Проведение работ по совершенствованию компрессоров путем организации рабочего процесса и конструкций машин на основе фундаментальных экспериментальных и теоретических исследований, математических моделей и подсистем САПР, создание комплексных математических моделей отдельных типов машин, описывающих рабочие процессы с учетом прочности и надежности конструкций и металлоемкости. Создание и внедрение норм расчета, оптимизированных программ экспериментальных исследований, стандартов на методы испытаний компрессоров и их элементов.

6. Исследования и разработка мероприятий по уменьшению шума и вибраций компрессорного оборудования, по повышению его надежности, безопасности и экологичности.

7. Завершение формирования испытательной базы для проведения сертификационных испытаний с целью максимального использования накопленного в компрессоростроении и холодильном машиностроении научно-технического потенциала и обеспечить их аккредитацию органам сертификации. Привлекать к работам по сертификации ведущих специалистов институтов, организаций, предприятий в области компрессоростроения и холодильного машиностроения.

8. Ускорение создания системы стандартизации, внедрение единой классификации, терминологии и обозначений в области компрессоростроения и холодильного машиностроения с учетом международных стандартов.

9. Разработка и создание стандартных и передвижных автоматизированных измерительных комплексов для проведения испытаний компрессоров в соответствии с типовыми методиками при одновременной обработке опытных данных с использованием ЭВМ. Разработка и внедрение типовых схем и программ измерений, увязанных с соответствующими датчиками, преобразователями сигналов, программами обработки и анализа опытных данных в ходе испытаний.

10. Продолжение разработки и создание эффективных устройств очистки и осушки газов перед входом в компрессоры различных типов, а также антиобледелительных систем.

11. Организация на предприятиях-изготовителях сервисного обслуживания выпускаемых машин и введение спецремонта компрессоров.

12. Расширение работ по модернизации эксплуатируемого компрессорного оборудования с сохранением основных, особенно крупногабаритных элементов, и повышению основных технико-экономических характеристик с учетом требований эксплуатации.

13. Продолжение работы по созданию систем охлаждения компрессорных установок и эффективного теплообменного оборудования, обеспечивающих решение вопросов снижения водопотребления и утилизации теплоты сжатия.

Большая часть парка компрессорного и холодильного оборудования в России и СНГ морально и физически изношена, требует в значительной части замены или модернизации. Поэтому в настоящее время более актуальной становится задача по ремонту и модернизации компрессорного и холодильного оборудования, в особенности крупного эксплуатируемого оборудования. При этом заказчик, как правило, выдвигает требования по частичному изменению параметров компрессора или установки в целом, с одновременным повышением критериев по надежности, безопасности, экономичности и экологичности.

В основном, компрессорные установки являются неотъемлемой составной частью большинства промышленных и общественных комплексов (химических, нефтеперерабатывающих, газовых, автомобильных, научно-исследовательских). Основная задача КУ – бесперебойное обеспечение объекта газовой смесью с заранее установленными параметрами. Следовательно отказ КУ приводит к простою всего комплекса или, как минимум, его большую часть, а это колоссальные убытки. Снижение расходов на обслуживание и продление межремонтного срока, а также упрощение диагностики неполадок в совокупности с повышением надежности, позволяет говорить о значительной выгоде связанной с применением новой системы управления вместо традиционной при модернизации существующих станций.

КУ требует постоянного контроля со стороны обслуживающего технического персонала, и предусматривает сохранение нормативных показателей работы основных узлов. Однако нестабильность нагрузки, которой подвергается КУ, приводит сокращению как общих часов наработки, так и межремонтных сроков эксплуатации оборудования. Внедрение новой линейки управляющих средств, так и исполнительных механизмов позволило значительно улучшить показатели надежности, ремонтопригодности и экономической выгоды КУ. В основном, применялось оборудование из семейства, прошедшего тестирование на подобных агрегатах и показавших себя наилучшим образом, с расширенными функциональными возможностями (расширение основной платформы интегрированных модулей, наличие сетевых узлов, оптимизация и упрощение программных компонентов), приемлемыми показателями точности измерений.


1. ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ КОМПРЕССОРНОЙ УСТАНОВКИ КОМПЛЕКСА ГИДРООЧИСТКИ МОТОРНОГО ТОПЛИВА (Л-24/6)

Компрессорная установка является неотъемлемой частью комплекса гидроочистки моторного топлива. Используемое оборудование должно отвечать нормам и критериям экологичности, безопасности, а главное, обоснованности применения в данной области. Система управления позволяет контролировать КУ, не загружая всю систему в целом, а лишь предоставляя отчет о ведение технологического процесса. Модульность построения архитектуры всего комплекса гидроочистки позволяет производить замену частей оборудования без остановки системы.

Общая характеристика комплекса

Установка гидроочистки Л-24/6 предназначена для удаления сернистых соединений из прямогонных дизельных фракций с содержанием серы до 2,0 %мас., керосиновых фракций с содержанием серы до 1,0 %мас., бензиновых фракций первичного и вторичного происхождения с содержанием серы до 1,0 %, вторичных фракций каталитического крекинга. На установке можно перерабатывать смесь первичных и вторичных дизельных фракций в соотношении 1:1 с содержанием серы до 1,5 %мас. (основное сырье).

Основные реакции каталитического гидрирования

Удаление примесей из нефтепродуктов происходит в результате частичной деструкции в основном сераорганических и частично кислородных и азотистых соединений в присутствии катализатора гидроочистки в среде водородсодержащего газа.

Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Кроме реакций взаимодействия сернистых, азотистых и кислородных соединений, в процессе гидроочистки протекают также реакции гидрокрекинга, насыщения олефинов, дегидрирования нафтеновых углеводородов, циклизации парафиновых углеводородов в нафтеновые (в области повышенных температур), гидрирования ароматических углеводородов при низких температурах и высоких давлениях.

Факторы, влияющие на ход процесса

В соответствии с механизмом протекания реакций гидроочистки моторных топлив скорость реакции зависит:

־ от химической природы сырья;

־ физических свойств сырья;

־ типа катализатора и его состояния;

־ парциального давления водорода;

־ объемной скорости;

־ конструкции реактора, например, от распределительного устройства газо-сырьевой смеси.

Поскольку скорость реакции является сложной функцией каждого из этих параметров и многие из них взаимосвязаны, очевидно, что количественно оценить влияние каждого параметра раздельно практически невозможно. Практически проанализировав параметры, выявим основные, которые будут наиболее важными при проектировании нашей системы.