Смекни!
smekni.com

Релаксационная стойкость напряжений в металлах и сплавах (стр. 12 из 17)

В этих условиях процесс релаксации напряжений при

характеризуется следующими особенностями.

При высоких температурах

снижается до
за короткое время, исчисляемое минутами; при нормальной и умеренно повышенных температурах действующее напряжение даже в течение весьма длительного времени может оставаться значительно больше
. Кроме того, наблюдается немонотонный характер зависимости
=f(
) при τ = const. Действительно, как было показано выше, кривые релаксации для разных
(больших
) могут пересекаться. Однако с увеличением времени эти кривые при сравнительно высоких температурах обычно сливаются в одну, мало отличающуюся от кривой, получаемой при
.

Следует иметь в виду, что при нормальной и умеренно высоких температурах, но при очень высоких

, существенно превосходящих
, может наблюдаться заметное упрочнение металла и повышение сопротивления релаксации за счет наклепа. В тех случаях, когда ненаклепанный металл обладает меньшим сопротивлением ползучести (релаксации), величина
при
может оказаться больше, чем при
.

3.2 Влияние времени на протекание процесса релаксации напряжений

Влияние времени на протекание процесса релаксации напряжений находится

в тесной зависимости от других факторов — начального напряжения и температуры, а также от структурной стабильности исследуемого сплава. Например, с повышением температуры влияние фактора времени усиливается.

Кривая релаксации в координатах напряжение — время (рисунок 15) отчетливо разбивается на два участка, отвечающих двум периодам релаксации. Первый период, продолжающийся в большинстве случаев весьма короткое время, характеризуется резким падением напряжения, чему отвечает ниспадающий участок аb.

Второй период релаксации, длительность которого намного больше первого, напротив, характеризуется весьма умеренной скоростью падения напряжения: релаксационная кривая на участке bс при большой длительности испытания приближается к оси абсцисс и в некоторых случаях она вообще затухает, т. е. выходит на горизонтальный участок.

Известно, немало попыток математического обобщения функциональной зависимости напряжения от времени. Например, И.А. Одингом были предложены следующие уравнения первого и второго периодов релаксации:

(56)

(57)

где k и р — постоянные коэффициенты, зависящие от свойств металла;

и
— начальные напряжения I и II периодов.

Аналитические уравнения этого типа имеют общий недостаток: они не отражают возможного влияния структурных превращений, происходящих у дисперсионно твердеющих сплавов при определенных температурах. Между тем развивающиеся во времени структурные превращения часто существенно влияют на характер процесса релаксации. Так, если у сильно дисперсионно твердеющих сплавов постоянство скорости релаксации устанавливается сравнительно быстро, то у слабо твердеющих сплавов стадия затухания скорости релаксации иногда длится тысячи часов. Структурная нестабильность испытуемых материалов проявляется и при изучении влияния времени на зависимости

=f(
) и
= f(
).

Продолжительность неустановившегося периода релаксации представляет существенный интерес, поскольку с этим связан практически важный вопрос о минимальной длительности опыта, достаточной для последующих экстраполяции. Изучение многочисленных первичных кривых релаксации показывает, что для стабильных при рабочей температуре материалов длительность начального периода обычно колеблется от 200 до 1000 ч. Одна­ко для сплавов, у которых в процессе службы структурные превращения протекают медленно, неустановившийся период может продолжаться значительно большие сроки.

В связи с этим время испытаний на релаксацию материалов, предназначенных для длительной службы, в наших лабораториях составляет 1000—3000 ч. Значительно реже испытания на релаксацию при повышенных температурах доводят до 10—20 тыс. ч (т. е. До фактического срока службы крепежных деталей), а при нормальной температуре — до 50 тыс. ч. Результаты опытов столь большой длительности представляют большую ценность для проверки правильности экстраполяции по результатам менее длительных испытаний.

3.3 Влияние температуры на процесс релаксации напряжений

Влияние температуры на процесс релаксации напряжений в металлах и сплавах весьма велико. Аналогично ползучести различают релаксацию напряжений при низких (меньше 0,25

), средних (0,25
— 0,5
) и высоких (более 0,5
) температурах.

Механизмы релаксации напряжений (и ползучести) в указанных диапазонах температур различны. Так, доминирующим механизмом низкотемпературной релаксации является скольжение и пересечение дислокаций. Релаксации напряжений в среднетемпературной зоне опре­деляется пересечением дислокаций, преодолением дислокациями барьеров Пайерса и, главное, поперечным скольжением. Спецификой высокотемпературной релаксации являются диффузионные механизмы перемещения дислокаций, переползание дислокаций, движение винто­вых дислокаций, вязкое перемещение атмосфер Коттрелла.

Следует отметить, что перечисленные механизмы по-разному проявляются при кратковременной и длительной релаксации, а также в металлах с различной решеткой и в сплавах с различной степенью легирования. Именно в связи с этим для некоторых сплавов характерны немонотонные кривые зависимости сопротивления релаксации от температуры (в пределах до 0,25

). Согласно кривой 1 рисунка 17, наблюдаются температурные области, в которых процессы релаксации и ползучести заторможены вследствие деформационного старения, образования предвыделений (зоны Гинье-Престона) и т.д. Иллюстрацией может служить реальная температурная кривая релаксации 4 для аустенитной стали типа Х18Н10Т при (τ0 = 350 МН/м2 (35 кг/мм2) и τ=24 ч (по данным Л.Б. Гецова).

Рисунок 17 - Зависимость

= f(T)

В других случаях температурная зависимость сопротивления релаксации (ползучести) выражается монотонными кривыми 2 и 3, рисунок 17. Подобный вид кривых характерен для сплавов, у которых процессы деформационного старения либо вообще не наблюдаются (кривая 2), либо они протекают настолько интенсивно, что низкотемпературная релаксация (ползучесть) практически отсутствует (кривая 3).

Незначительная интенсивность релаксации напряжений в металлах при температурах ниже 0°С долгое время служила поводом для сомнений в ее существовании. Однако процессы релаксации напряжений действительно происходят при температурах ниже 0° С. Так, Фелтам изучил релаксацию в железе Армко, кобальте, меди, α-латуни и магниевом сплаве при температурах вплоть до -196°, С. В. Я. Зубов и С. В. Грачев в высокопрочной стали марок 70ХС и 70СЗХМВА при температуре -96° С, Б. А. Потехин и И. И. Богачев в аустенитной стали типа ЗХ10ГЮ также при -96° С.

Говоря о среднетемпературной области (0,25— 0,5)

, следует отметить, что повышение температуры испытания сказывается на первичных кривых релаксации следующим образом: удлиняется I период релаксации и увеличивается угол наклона II (прямолинейного) участка. При дальнейшем повышении температуры (вы­ше 0,5
) процесс релаксации вообще может ограничиться I периодом, что свидетельствует о полном релаксационном разупрочнении металла. Температура, вызывающая эту фазу релаксации, представляет известный интерес. Но с инженерной точки зрения большее значение имеет температура, отвечающая начальной стадии разупрочнения, когда начинается существенное спада­ние ах, но еще наблюдается вполне устойчивый II период релаксации.