При испытаниях кольцевых образцов точность расчета падения напряжений, согласно формуле, зависит от достоверности определения значений модуля упругости. В настоящее время широко используются два метода определения модуля упругости: статический и динамический.
Время замера и диапазон используемых напряжений практически исключают возможность протекания процессов ползучести при динамическом (
) и статическом ( ) методах определения модуля упругости. Однако разница между значениями и достигает иногда 20%. Кроме того, определенные различия значений модуля упругости наблюдаются при его определении на образцах разных размеров, на металле разных плавок, с разным уковом и т. п.На рисунке 9 в качестве примера приведены кривые зависимости модуля упругости сталей ЭИ481 и ЭИ612, полученные различными методами, в разных лабораториях.
Известны методы пересчета результатов испытаний кольцевых образцов на случай одноосного напряженного состояния. В.И. Розенблюм предложил решение задачи о перераспределении напряжений в изогнутом брусе, использовав гипотезу течения. И.А. Одинг и Г.Ф. Лепин провели соответствующие расчеты на основе предположения о превращении в процессе релаксации треугольной эпюры в трапецеидальную.
Оригинальный метод расчета изменений напряжений в кольцевом образце был предложен Е. А. Хейном, который рассматривает задачу релаксации напряжений в прямоугольном брусе при чистом изгибе. В этом случае все элементы объема находятся в линейном напряженном состоянии.
В любой момент времени τ распределение напряжений в образце σ(y) однозначно зависит от начального напряжения. При первом нагружении
(у)=Обозначив
(y) — напряжение треугольной эпюры, равномоментной истинной эпюре напряжений, получимПродифференцировав обе части уравнения по у
(42)и проведя элементарные преобразования, получим
(43)Для первого нагружения
и (44)Для расчетов n-ного нагружения по формуле необходимо знать величину начального напряжения
, которую определяют последовательно из формулы (45)выведенной из предположения трансформирования поперечного размера образца 2h:
где
и — начальное напряжение при п-м нагружении для образцов с начальными напряжениями при первом нагружении и ; и — конечные напряжения при (п—1)-м нагружении для образцов с начальными напряжениями при первом нагружении и .На рисунке 10 приведены схема расчета начальных напряжений по уравнению для второго нагружения и графический метод расчета истинного напряжения. Проведенные расчеты показали, что кривые релаксации 1, рассчитанные по формулам 42-45 для первого нагружения близки к кривым 4, полученным по формуле. После повторных нагружений указанные кривые резко различаются: истинная кривая одноосной релаксации оказывается ниже найденной по формулам, рисунок 11. Кривые 2, рассчитанные по гипотезе трапеции, оказываются ниже истинных для первого и повторных нагружений. Кривые релаксации 3, подсчитанные по теории течения, оказались также близкими к истинной.
Значительно меньшее распространение получил другой способ испытания на релаксацию при изгибе, разработанный в ЦНИИТМАШе. Испытанию подвергают плоскую пластину, которой задается определенный прогиб. Принцип действия специального приспособления ИР-4Н, созданного для таких испытаний, следующий.
Рисунок 10 - Схема расчета начальных напряжений по уравнению для второго нагружения (а) и графический метод расчета истинного напряжения (б)
Кулачки приспособления, создающие необходимый прогиб пластины, выбирают в зависимости от величины заданного начального напряжения. Поворот кулачка на 90° обеспечивает создание прогиба двух одновременно испытываемых пружин. Кулачки после прогрева приспособления поворачивают с помощью специального ключа. Разгрузку образца производят тем же ключом.
А, Б —
=2ОО и 300 МН/м2 (20 и 30 кг/мм ) соответственно: I, II, III — первое, второе и третье погружение соответственноРисунок 11 - Кривые релаксации напряжений, рассчитанные по данным испытаний кольцевых образцов.
Напряжения рассчитывают по формулам:
(47) (48) (49)где
— начальный упругий прогиб;(
)) — остаточный прогиб;l — длина пластины;
h — толщина;
μ— коэффициент Пуассона.
Для измерения (
) используют специальный электромикрометр.Недостатком метода является трудность в изготовлении пластин, особенно в случае немагнитного материала.
Ограниченное применение получили также методы испытания на изгиб образцов в виде металлической ленты, предложенные применительно к пружинным лентам. Сущность метода состоит в следующем.
Пружинную ленту вводят в стальные кольца, внутренний диаметр которых выбирают в соответствии с начальным напряжением. Размеры колец должны обеспечивать получение только упругой деформации. «Заряженные» кольца выдерживают при температуре испытания в течение времени, необходимого для построения кривой релаксации. Метод нагрева колец с лентой, так же как и метод нагрева кольцевых образцов Одинга, выбирают в зависимости от тех требований, которые ставит перед собой исследователь в отношении тщательности изучения первого участка релаксации. В случае необходимости определения остаточного напряжения через несколько минут после нагружения применяют нагрев в расплаве солей, состав которых выбирают применительно к температуре испытания. Для углеродистых сталей и сталей с ограниченным количеством никеля возможен более интенсивный нагрев — в расплаве чистого свинца или его эвтектик. Испытания при температурах, не вызывающих интенсивного развития процессов ползучести, проводят с нагревом в печи. Остаточное напряжение определяют по замерам радиуса кривизны ленты, извлеченной из кольца, с помощью формулы
(50)где h — толщина ленты;
— радиус кольца; —радиус кривизны ленты, деформированный при релаксации.Расчеты по формуле, так же как и по формуле для кольцевых образцов Одинга, предполагают треугольную эпюру распределения напряжений по сечению.
Для исследования релаксации напряжений в процессе быстрого нагрева металла (до 2000 град\сек) была разработана методика, позволяющая испытывать в условиях изгиба плоские пластины, нагреваемые пропусканием тока.
При этих испытаниях уменьшаются "напряжения в процессе нагрева за счет релаксации напряжений при переменной температуре и уменьшения модуля упругости при увеличении температуры:
(51)где
(52)причем
— начальное упругое напряжение при 20° С; — пластическая деформация при температуре Т, слагающаяся из деформации ползучести и мгновенной пластической деформации .