Смекни!
smekni.com

Типи передач (стр. 2 из 5)

Швидкохідні ремені виготовляють з капрону або нейлону з фрикційним покриттям з синтетичних смол або шкіри. Завдяки високій міцності цих матеріалів, ремені являючись набагато тоншими і легшими, допускають значно великі натягнення. Виконують їх нескінченними або кінцевими із зварюванням кінців так, що місце з'єднання не відрізняється від цілого ременя, чим забезпечується найбільш спокійна робота передачі. Швидкохідні ремені допускають швидкість до 100 м/с. Якнайкращі експлуатаційні показники мають нейлонові ремені. Для клиноремінної передачі застосовують прогумовані нескінченні ремені двох конструкцій: з несучим елементом з декількох шарів тканини 1 (рис. 1.4, а) або з шаром шнура 2, навитого по спіралі, завулканізованих у резину 3 (рис. 1.4, б). Ремені можуть мати тканинну обгортку поверхні 4, а також можуть бути

виконані без неї.

а) б)

Рис. 1.4 Структура пасів

Рис. 1.5 Шківи для плоских ременів

Для плоских ременів форма поверхні шківа гладка циліндрична. Для попередження спаду плоского ременя з шківів один з них (бажано більший) виконують з опуклим ободом, описаним по дузі, або циліндровим з двосторонньою конусністю (рис. 1.5).

Шорсткість робочої поверхні обода повинна бути не більше Ra = 2,5 мкм; у шківів для швидкохідних передач ця поверхня полірується. При швидкості v > 40 м/с із-за повітряного клину, що утворюється між шківом і набігаючою гілкою ременя, знижується зчеплення між взаємодіючими поверхнями і падає несуча здатність передачі. Для попередження цього явища на шківах передбачають кільцеві канавки. При швидкості v≥ 5 м/с шківи необхідно статично балансувати. Шківи швидкохідних передач необхідно піддавати динамічному балансуванню. Основні розміри шківів - діаметр d, ширина В і стріла опуклості h регламентовані ГОСТ 17383-73*.

Для клинових ременів (рис. 1.6) робочою поверхнею є бічні сторони клинової канавки в ободі шківа. Робоча поверхня канавок шківа має шорсткість Ra = 2,5 мкм; її бажано полірувати. Шківи повинні бути добре збалансовані. Розміри і число канавок визначаються профілем ременя і числом ременів. Ремінь при вигині на шківі деформується, і кут його перетину зменшується тим більше, чим менше діаметр шківа. Для кращого прилягання бічних поверхонь ременя до канавок шківа кут канавки φ слід вибирати залежно від розрахункового діаметру шківа.

Для поліклинових ременів робочою поверхнею є бічні сторони клинових канавок в ободі шківа. Кут клину канавок шківа φ = 40˚ незалежно від діаметру шківа.

Для круглих ременів профіль канавок вибирають напівкруглим з радіусом, рівним радіусу ременя.

Рис. 1.6 Шків для клинових ременів

Шківи виконують з чавуну СЧ 15 - при v ≤ 30 м/с, модифікованого чавуну і сталі 25Л - при v ≤ 45 м/с, алюмінієвих сплавів - при v ≤ 80 м/с, з легованої сталі - при v ≤ 100 м/с, зварними з прокату і штампованих елементів - при v ≤ 60 м/с, а також із пластмас і дерева.

1.3 Основи розрахунку пасових передач

Теоретичні основи розрахунку являються загальними для всіх типів ременів. Основними критеріями працездатності ременних передач є: тягова здатність, яка визначається силою тертя між та шківом, довговічність ременя, яка в умовах нормальної експлуатації обмежується розрухою ременя від втоми. На сьогоднішній день основними розрахунками ременних передач є розрахунки по тяговій здатності. Довговічність ременя збільшують при розрахунку шляхом вибору основних параметрів передачі в співвідношенні з рекомендаціями, виробленими на практиці.

1.3.1. Кінематичні параметри. Окружні швидкості на шківах

v1 =d1 n1 / 60 ; v2 = d2 n2 / 60. (1.1)

Враховуючи жорстке ковзання ременя, можна записати v1 < v2 чи

v2 = v1 (1—ε). (1.2)

де ε – коефіцієнт ковзання. При цьому передаточне відношення

i = n1 / n2 = v1 d1 = d2 / [ d1 (1—ε) ]. (1.3)

В подальшому показано, що величина ε залежить від навантаження, тому в ременній передачі передаточне відношення не завжди є постійним. При нормальних робочих нагрузках ε ≈ 0,01…0,02. Найбільше значення ε дозволяє наближено приймати:

i ≈ d2 / d1. (1.4)

1.3.2 Геометричні параметри

На рис1.7, а – міжосьова відстань; β – кут між гілками ременя; α – кут обхвату ременем малого шківа. При геометричному розрахунку відомими зазвичай є d1, d2 і а, які визначають кут  і довжину ременя l. В результаті витяжки і провисання ременя значення α і l не являються точними і визначаються приблизно так:

α = 180°—β ; sin (β/2) = (d2—d1) / (2a) (1.5)

Враховуючи, що β/2 практично не перевищує 15°, приблизно приймаємо значення синуса рівним аргументу і запишемо

β = (d2 — d1) / а рад ≈ 57 ( — d1) / а° (1.6)

Довжина ременя вираховується як сума прямолінійних ділянок і дуг обхвату:

l ≈ 2a + 0,5 (d2 + d1) / (4а) (1.7)


Рис. 1.7 Геометричні параметри передачі

1.3.3 Сили та силові залежності


На рис.1.8 показане навантаження гілок ременя у двох випадках: Т1 = 0 (рис.1.8,а) і Т1 > 0 (рис.1.8,б). Тут позначено Fo – початковий натяг ременя ; F1 і F2 –натяг ведучої та веденої гілок в навантаженій передачі; Ft = 2 T1 / d1 – окружна сила передачі.

Рис. 1.8 Сили та силові залежності

За умовою рівноваги шківа маємо:

T1 = 0,5 d1 (F1 – F2) (1.8)

або

F1 – F2 = Ft (1.9)

Зв’язок між Fo, F1 та F2 можна встановити на основі наступних роздумів.

Геометрична довжина ременя не залежить від навантаження [див. формулу (1.7)] і залишається незмінною як в ненавантаженій, так і в навантаженій передачі. З цього випливає, що додаткова витяжка ведучої гілки компенсується рівним скороченням веденої гілки (рис.1.8). Запишемо:

F1 = Fo + ∆F , F2 = Fo – ∆F (1.10)

або

F1 + F2 = 2Fo (1.11)

Із рівнянь (1.10) і (1.11) випливає:

F1 = Fo + Ft / 2 , F2 = Fo – Ft / 2 (1.12)

Отримали систему двох рівнянь з трьома невідомими Fo, F1 та F2. Ці рівняння встановлюють змінення натягу ведучої чи веденої гілок в залежності від навантаження Ft, але не дозволяють передавати це навантаження чи тягову передачу, яка зв’зана з величиною сили тертя між ременем і шківом. Така залежність встановлена Ейлером.


2 ПРУЖИНИ

2.1 Призначення та конструкції пружин

Пружні елементи, або пружини, належать до розповсюджених деталей, що використовуються в різних машинах, механізмах та при­ладах. Вони виконують інколи дуже відповідальні та складні функції.

Пружні властивості пружин дають змогу використовувати їх у та­ких випадках:

а) для створення потрібних постійних зусиль (у натискних та натяжних пристроях передач тертям, муфтах, гальмах, клапанах);

б) для акумулювання механічної енергії попереднім деформуван­ням пружин (пружинні двигуни приладів часу та інші пристрої);

в) для віброізоляції та амортизації ударів за рахунок пружних характеристик відповідним чином підібраних пружин (у транс­портних засобах, опорних пристроях чутливих елементів приладів та ін.);

г) для вимірювання сил, що здійснюється фіксацією пружних де­формацій пружин (динамометри та інші вимірювальні прилади).

Усі пружини за видом навантаження поділяють на пружини роз­тягу, стиску, кручення (рис.2.1).


Рис. 2.1 Види пружніх елементів

У приладобудуванні найрозповсюдженішими є гвинтові пружини розтягу, стиску та кручення, виконані із дроту круглого або іншого перерізу. Гвинтова пружина розтягу виготовляється зі щільним навиванням витків, до того ж крайні витки плавно перехо­дять у спеціальні вушка, які зручні для закріплювання пружини.

Гвинтові пружини стиску бувають циліндричної та конічної фор­ми. Конічна форма забезпечує пружині змінну жорсткість при дефор­муванні. В таких пружинах стиску робочі витки не дотикаються між собою, а лише крайні витки виконуються зі щільною навивкою для надання пружині плоских опорних торців. Гвинтові пружини стиску найчастіше виготовляють із дроту круглого перерізу, а при великих стискаючих силах застосовують пружини з квадратним або прямокут­ним перерізом витків. З метою підвищення податливості в умовах об­межених габаритних розмірів використовують багатожильні гвинто­ві пружини стиску.

2.2 Розрахунок гвинтових циліндричних пружин

2.2.1 Розрахунок гвинтових циліндричних пружин розтягу та стиску

Гвинтові циліндричні пружини розтягу та стиску мають такі основ­ні геометричні параметри (рис. 2.2 а, б):


Рис. 2.2 Гвинтові циліндричні пружини розтягу та стиску

d— діаметр витків (дроту) пружини;

D— середній діаметр пружини;

Dз = D + d — зовнішній діаметр пружини;

С = D/d — індекс пружини;

h — крок витків у ненавантаженій пружині (h = d — для пру­жини розтягу, рис.2.2, a);

α — кут підйому витків (tg α = h/(

D);

H0 — довжина (висота) ненавантаженої пружини;

Hp — довжина робочої частини ненавантаженої пружини;