Смекни!
smekni.com

Технологический процесс механической обработки шестерни ведущей конечной передачи (стр. 1 из 3)

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. Оценка структуры детали

2. Выбор и обоснование способа производства

3. Оптимизация метода получения заготовки

4. Оценка разметов заготовки

5. Составление организационной структуры

6. Определение расстояний между отсеками

7. Характеристика вертикально-сверлильных операций

8. Оценка трудозатратности операций

БИБЛИОГРАФИЧЕСКИЙ СПИСОК


ВВЕДЕНИЕ

На этапе изготовления машин особое внимание обращают на их качество и его важнейший показатель – точность. Понятие “точность” относится не только к размеру, но и к форме, взаимному расположению поверхностей, физико-механическим характеристикам деталей и среды, в которой их изготовляют.

Создание машин заданного качества в производственных условиях опирается на научные основы технологии машиностроения. Процесс качественного изготовления машины (выбор заготовок, их обработка и сборка деталей) сопровождается использованием технологии машиностроения.


1. Оценка структуры детали

Анализ технологичности детали производим исходя из служебного назначения детали, на основании её чертежа.

1.1 Анализ точности размеров

Размеры с указанными предельными отклонениями:

1) ø

;

2) ø

;

3)

;

4)

;

5)

;

6) 60+0,3

7) ø

;

8)

;

Остальные поверхности выполняются по 14 квалитету.

Сравнивая приведённые выше размеры, определяем, что наиболее точной поверхностью является поверхность с заданным размером ø

.

1.2 Анализ точности формы поверхностей

Допуск непостоянства диаметра поверхностей Г и М в поперечном и продольном сечениях не более 0,008мм. Точность форм остальных поверхностей должна быть выдержана в пределах допуска на размер.

1.3 Анализ точности расположения поверхностей

Допуск параллельности боковых поверхностей шлицев относительно Г и М равен 0,05мм на 100мм длины.

1.4 Анализ точности формы и расположения поверхностей

Допуск биения поверхности диаметром ø

относительно поверхностей Г и М - 0,05 мм.

Допуск биения поверхности диаметром ø

относительно поверхностей Г и М - 0,03 мм. Допуск биения поверхностей по размеру
относительно поверхностей Г и М - 0,02 мм.

1.5 Анализ качества поверхностного слоя

Значения шероховатости, указанные на чертеже:

1) поверхность ø

выполняется с шероховатостью 1,25 мкм по Ra;

2) поверхность по размеру

выполняется с шероховатостью 2,5мкм по Ra;

3) боковые поверхности шлицев выполняется с шероховатостью 3,2 мкм по Ra, фаски в центральном отверстии – с шероховатостью 3,2 мкм по Ra;

Остальные поверхности выполняются с шероховатостью 12,5 мкм по Ra.


2. Выбор и обоснование способа производства

Серийность производства определяем ориентировочно, пользуясь данными, таблица 2.1 /7/: для деталей, выпускаемых в год количеством 1400 шт. и массой 3,071кг тип производства – среднесерийный.


3. Оптимизация метода получения заготовки

Метод получения заготовок деталей машин определяется назначением и конструкцией детали, материалом, техническими требованиями, объёмом выпуска продукции и типом производства, а также экономичностью изготовления.

Масса заготовки определяется по формуле

Gп = q/ Кисмет,

где q = 3,071 кг – масса готовой детали;

Kис мет = 0,8 – коэффициент использования металла, с. 6 /7/;

Gп = 3,071 / 0,8 = 3,84 кг.

Принимаем способ получения заготовки штамповкой.

Определим сложность поковки (отношение массы поковки к массе геометрической фигуры, в которую вписывается форма поковки)для последующего определения исходного индекса:

Gп / Gф

где Gф – масса геометрической фигуры,

Gф =

,

где r- радиус тела,мм

l – габаритная длина фигуры,мм

G- объемная масса стали, G=7,85т/м3

Gф = 3,14*0,0422*0.235*7,85 = 0,0102т =10,2кг.

С учетом выше полученного степень точности поковки – С2 с. 33 /8/. Группа стали – М2; класс точности поковки Т4 таб.10 /8/. Исходный индекс по таб.2 /8/ равен 13.

Стоимость заготовки

определяется по формуле

,

где

– базовая стоимость 1 т заготовок; согласно с. 33 /3/ для заготовок, полученных штамповкой принимаем
руб/т;

– коэффициент, учитывающий точность штамповки; согласно с. 33 /3/ для штамповки класса точности Т4 принимаем
;

– коэффициент, учитывающий группу сложности; по таблице 2.12 /3/ для первой группы сложности принимаем
;

– коэффициент, учитывающий массу; по таблице 2.12 /3/ для штамповок массой от 2,5 до 4 кг принимаем
;

– коэффициент, учитывающий материал; согласно с. 37 /3/ принимаем
;

– коэффициент, учитывающий объём производства; согласно с.38
;

– стоимость отходов (стружки); по таблице 2.7 /3/ для стальной стружки принимаем
руб/т;

руб.

4. Оценка разметов заготовки

Масса заготовки определяется по формуле

Gп = q/ Кисмет,

где q = 3,071 кг – масса готовой детали;

Kис мет = 0,8 – коэффициент использования металла, с. 6 /7/;

Gп = 3,071 / 0,8 = 3,84 кг.

Принимаем способ получения заготовки штамповкой.

Определим сложность поковки (отношение массы поковки к массе геометрической фигуры, в которую вписывается форма поковки)для последующего определения исходного индекса:

Gп / Gф

где Gф – масса геометрической фигуры,

Gф =

,

где r- радиус тела,мм

l – габаритная длина фигуры,мм

G- объемная масса стали, G=7,85т/м3

Gф = 3,14*0,0422*0.235*7,85 = 0,0102т =10,2кг.

С учетом выше полученного степень точности поковки – С2 с. 33 /8/. Группа стали – М2; класс точности поковки Т4 таб.10 /8/. Исходный индекс по таб.2 /8/ равен 13.

По ГОСТ 7505-89 определяем основные припуски на механическую обработку и допуски для наружных поверхностей вращения и плоскостей, обрабатываемых с одной стороны.

Для самой точной и ответственной поверхности детали ø

по табл.3/8/ припуск на сторону zo=2,0 мм.По табл.8 /8/ допуск Т = 2,5мм. Следовательно, расчетный размер

Dр = Dном + 2zo= Æ45+2*2,0=Æ

мм

Допуски и припуски на остальные поверхности назначаются аналогично.

Таблица 1

Расчётные размеры заготовки

Номинальныйдиаметр Dном(размер Hном)поверхности, мм Общий припуск наобработку на однусторону zо, мм Допуск T,мм Расчётный диаметр Dр(размер Hр) поверхности, мм
ø
2,0 2.5
235 2.0 3,2
50 1.5 2.5
60 1.8 2.5
ø
;
1.5 2.5 Ø
ø
1.9 2.2 Ø
1.5 2,5
Ǿ54 1,5 2,5

5. Составление организационной структуры