Смекни!
smekni.com

11) Фильтрация готового продукта.

Вышеперечисленные стадии технологического процесса имеют место при синтезе всех марок жидких полисульфидных полимеров. Получение различных марок полимеров отличается рецептурой и технологическими параметрами.

Вторым способом получения тиоколов является способ электрического окисления. Однако из-за отсутствия описания технологической схемы производства по этому способу, а также подробного описания самого процесса, мы не можем сравнить эти два способа.

Поэтому для проекта был выбран способ получения жидких тиоколов методом поликонденсации, и взята технологическая схема аналогичнаятой, которая существует на ОАО «КЗСК». Эта схема позволяет получать все марки жидких тиоколов.


1.2 Выбор района и площадки под строительство

На выбор района под строительство предприятия влияют очень многие факторы. Климатические условия выбранного места под строительство, его географическое расположение оказывают существенное влияние на выбор наиболее оптимальных условий процесса, а также на расчет по технике безопасности данного производства. Нельзя упустить и тот момент, что выбор самого метода производства в значительной мере зависит от выбора места строительства.

Местом строительства цеха по производству жидких тиоколов является территория завода ОАО «КЗСК» города Казани.

Выбор района определяется следующими факторами:

1) наличие дешевого и ценного сырья, газа добываемого в РТ;

2) близость энергетических и тепловых ресурсов, ТЭЦ, обслуживающих данное производство;

3) наличие густой сети железных и автотранспортных дорог;

4) климатические– континентальный климат, редкое колебание температур;

5) близкое наличие водных ресурсов – река Волга и озеро Кабан;

6) наличие ИТР, которые имеют профессиональный опыт и соответствующую квалификацию.


2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы процесса

2.1.1 Химические и физико-химические основы

Основными исходными соединениями для получения полисульфидных полимеров являются алифатические галогенпроизводные и полисульфид натрия. Основным мономером, применяемым для получения как эластомеров, так и жидких полимеров, является ди (b-хлорэтил) формаль, который получают из безводных этиленхлоргидрина и формальдегида в присутствии различных соединений, способных удалять образующуюся при этом воду в виде азеотропов. Синтез ди (b-хлорэтил) формаля также может быть легко осуществлен непосредственно из окиси этилена, хлористого водорода и формальдегида.

Ди (b-хлорэтил) формаль является достаточно стабильным соединением, но для длительного хранения его необходимо заправлять незначительными количествами антиоксиданта фенольного типа или газообразном аммиаком. Он может быть использован для поликонденсации с полисульфидом натрия без дополнительной перегонки.

В процессе синтеза полисульфидных полимеров, как правило, применяют от 0,1 до 4%(мол.) трифункционального мономера 1,2,3-трихлорпропана, который получают хлорированием пропилена или хлористого аллила.

Неорганические полисульфиды. Для получения полисульфидных полимеров обычно применяют водные 2H растворы полисульфида натрия. Одним из основных промышленных способов его получения является реакция взаимодействия 40%-го раствора едкого натра с серой

6NaOH + (2n+1)S ® 2Na2Sn + 3H2O + Na2SO4

Значение n в формуле Na2Sn отражающее число атомов серы в полисульфиде, называется степенью полисульфидности и является средней величиной, так как сульфид-анионы в водных растворах находятся в динамическом равновесии и состоят из смеси, содержещей от моно- до пентасульфидов.

Получение полисульфидных полимеров основано на реакции поликонденсации полисульфидов натрия с галогенпроизводными алифатического ряда. Схема этой реакции на примере ди(b-хлорэтил)формаля и тетрасульфида натрия может быть представлена следующим образом:

nCl-CH2-CH2-O-CH2-O-CH2-CH2-Cl + nNa2S4®

(-CH2-CH2-O-CH2-O-CH2-CH2-S-S-S-S-)n + 2nNaCl

Реакция протекает по механизму нуклеофильного замещения хлорных групп полисульфид-анионом. Поликонденсация осуществляется при 80-1000C в водной дисперсии. Диспергатором процесса является гидроокись магния, которая приготавливается непосредственно перед процессом поликонденсации в том же реакторе. В ряде случаев наряду с диспергатором применяют также ПАВ, такие, как канифольное мыло.

Рост цепи осуществляется по следующим реакциям:

Cl-R-Cl + Na2Sn® Cl-R-SnNa +NaCl

NaSn-R-Cl + NaSn-R ® -Sn-R-SnNa +NaCl

-Sn-R-SnNa + Cl-R-Sn® -Sn-R- Sn-R- Sn- +NaCl

Характерное отличие этого процесса от классических реакций поликонденсации состоит в том, что полимеры с высокой молекулярной массой порядка (2¸5)105 получаются только при избытке полисульфида натрия. Избыток неорганического полисульфида обеспечивает получение полимера с концевыми группами SnNa, которые, взаимодействуя между собой, приводят к увеличению молекулярной массы полимера:

-Sn-R-SnNa + NaSn-R- ® -Sn-R- Sn-R + Na2Sn

Степень полисульфидности полимера соответствует степени полисульфидности исходного неорганического полисульфида.

Реакционная способность три- и тетрасульфидных связей в 103 раз больше чем дисульфидной связи, а энергия диссоциации соответственно в два раза меньше.

Полисульфидные полимеры получают на основе ди- и тетрасульфида натрия. В последнем случае осуществляют процесс десульфирования, обработкой водной дисперсии полимера едким натром, сульфитом натрия, гидросульфитом натрия или сульфидом натрия.

Реакция превращения полисульфидных связей в дисульфидные происходит через промежуточное расщепление полисульфидных связей и образование неустойчивых концевых Na2O3-S-S-S-групп, которые реагируют с большой скоростью с концевыми –S-Na-группами другой молекулы с образованием дисульфидных связей.

Водные дисперсии высокомолекулярных полимеров отмывают многократно от избытка полисульфида натрия, хлористого натрия и других минеральных солей, а также от низкомолекулярных полимеров с концевыми –OH и –S-Na-группами, которые растворены в щелочном полисульфиде. В процессе отмывки протекают реакции взаимодействия между полисульфидными связями полимера и неорганического полисульфида. Эти реакции вызваны сдвигом равновесия в реакционной среде вследствие изменения концентрации водных растворов полисульфида натрия. Одновременно происходит перестройка молекулярных цепей полимера, приводящая к изменению его молекулярных параметров.

Каучук выделяют из отмытой дисперсии, разрушая гидроокись магния (коагуляция) минеральными кислотами, затем его отмывают от кислоты и сушат в вакуум-сушилках.

2.1.2 Технологические основы

Алифатические полисульфиды, или тиоколы – это олигомеры, фрагменты которых содержат дисульфидную связь, и имеют две и более концевых меркаптанных групп: HS - R(SS - R/)n – SH. Термин «Тиокол» первоначально возник как торговая марка полисульфидных олигомеров, выпускаемых кампанией «Thiokol Chemical Corp.» (USA) (сегодня «Morton International Inc.»).

Полисульфидные олигомеры (ПСО) представляют собой реакционноспособные олигомеры, образующие после отверждения герметики с уникальным комплексом свойств. Высокая термодинамическая гибкость и наличие в основной цепи химически связанной серы (до 80%) сообщают герметикам на их основе высокую устойчивость к действию топлив, газонепроницаемость, водостойкость и, благодаря насыщенности основной цепи, высокую стойкость к ультрафиолету, озону, радиации. Герметики на основе ПСО способны отверждаться без нагрева и практически без усадки, а также долговременно (до 20-30 лет) эксплуатироваться в температурном интервале от -60° до +80°С.

В промышленности, жидкие тиоколы получают путём восстановительного расщепления по полисульфидным связям высокомолекулярных полисульфидов, в результате чего снижается молекулярная масса полученного высокополимера (обычно до Мп » 1000¸4000).

В основе синтеза жидких тиоколов лежит реакция поликонденсации ди- или тригалогенпроизводных органических соединений с ди- или полисульфидами натрия.

Наиболее распространённым мономером является 2,2¢-дихлордиэтилформаль, который обеспечивает наиболее высокую термодинамическую гибкость макромолекулярных цепей.

Введение совместно с бифункциональными мономерами трёхфункционального-1,2,3-трихлорпропана (ТХП) в количестве 0,5¸2,0% мол. позволяет получать разветвлённые олигомеры, вулканизаты которых не подвержены заметной хладотекучести и имеют улучшенные физико-механические характеристики по сравнению с вулканизатами линейных олигомеров. Следует отметить, что существует корреляция в значениях жизнеспособности, физико-механических показателей композиций на основе ПСО и степени разветвлённости олигомеров.

Увеличение содержания ТХП в жидком тиоколе в первую очередь приводит к уменьшению относительного удлинения. В связи с этим, как правило, там, где от герметиков требуются высокие значения деформативности (строительство) используют тиоколы с содержанием ТХП до 0,5%.

Считается, что весь ТХП участвует в формировании макромолекул, а его звенья статистически распределяются по цепи . Однако, Мазурек и Мориц, использовав метод ЯМР13С для определения количества связанного ТХП в жидких тиоколах в своей работе пришли к выводу, что у некоторых полимеров уровень связанного трифункционального агента ниже теоретического, в связи с тем, что часть ТХП гидролизуется уже в реакторе. С помощью модельных соединений были обнаружены отклонения от идеальной химической структуры ПСО. В дополнении к основным резонансным пикам