Третья опория имеет вид: "Быстроногий Ахиллес не может догнать черепахи, так как каждый раз, когда он достигает занимаемого ею места, черепаха успевает несколько подвинуться вперед. Таким образом, чтобы настичь черепаху, Ахиллесу необходимо занять бесконечное множество мест, которые занимала черепаха" [3, c.22]. В отличие от "дихотомии" "Ахиллес" предполагает одинаково бесконечно делимыми как пространство, так и время: он поднимает ту же проблему, но в более усложненном виде. Действительно, главная трудность аргумента "Ахиллес" заключается в непонятности, как возможно преодоление того бесконечно малого пространства, которое всегда будет отделять Ахиллеса и черепаху, и, как справедливо указывает Шнейдер, решение вопроса требует нарушения параллелизма бесконечно делимых пространства и времени: Ахиллес настигнет черепаху, если в бесконечно малый промежуток времени он пройдет не бесконечно малое расстояние. Но это противоречит нашему убеждению, что движение требует времени. Итак, остается выбор между безвременным движением и движением бесконечным.
бесконечная величина зенон аристотель
Четвертое доказательство против движения - "стрела" утверждает: "Летящая стрела покоится" [3, c.25]. В основе этого доказательства лежала предпосылка, что время есть сумма моментов, а пространство - сумма точек. Это доказательство могло иметь двоякую форму, смотря по тому, указывалось ли на то, что стрела постоянно находится в одном месте, или в одном моменте времени. Первая форма: "в каждом пункте пути летящая стрела занимает одно определенное место, равное своему объему. Двигаться же невозможно, если занимать равное себе место (ибо для движения предмет нуждается в пространстве, большем себя). Если же в каждом пункте пути тело находится в покое, то движение тела слагается исключительно из состояний покоя. Итак, ряд состояний покоя вместе образуют движение (сумма нескольких, так сказать, нулей движения дает некоторую положительную величину)". Вторая форма: "летящая стрела покоится, так как она всегда находится в одном каком-нибудь (настоящем каждый раз) моменте времени. Момент времени неделим, и потому в течение его стрела не может изменить своего положения: в противном случае, момент времени оказался бы разделенным соответственно двум положениям стрелы в этот момент. А так как время состоит только из отдельных моментов, то движущийся предмет всегда находится в покое" [3, c.28-29].
Пятое возражение против движения - "стадий": "С противоположных сторон движутся по параллельным линиям с равною скоростью равные массы и проходят мимо неподвижной третьей массы такой же длины. Оказывается, что одна и та же точка, движущаяся с одной и той же скоростью, пробегает одно и то же расстояние не в одинаковое время, но и в половинное время и в двойное, смотря по тому, с какого пункта мы будем наблюдать это движение. Таким образом, получаем нелепое следствие: половина равна целому" [3, c.33]. Аргумент Зенона вскрывает относительность движения. Иначе представляется положение вещей, если смотреть на движение каждого тела в отдельности, и иначе, если наблюдать их движения вместе относительно друг друга.
Зенон использовал в апориях свойство бесконечной величины к постоянному увеличению. Он показал, что это свойство потенциальной бесконечности опровергает значимые понятия физики (пространство, время, скорость, движение), математики (число) а самое главное противоречат принятому человечеством восприятию окружающего мира. Поэтому аргументы Зенона еще больше создали загадок, тайн и противоречий вокруг свойств бесконечности.
В учении о бесконечном Аристотелю принадлежит заслуга различения потенциальной и актуальной бесконечности, что он мог сделать, поскольку ввел в философию понятия возможности (потенциальности) вообще и действительности (актуальности) вообще. Представление о бесконечном было уже присуще людям во времена Аристотеля. Ему оставалось лишь найти причины этого представления и подвергнуть его мощному воздействию своего аналитического ума.
Аристотель подходит к проблеме бесконечного диалектически: бесконечное как таковое нельзя ни признавать, ни отрицать, но из этого не следует, как сказал бы Гераклит, что она существует и не существует. Это означает, что бесконечности как таковой нет, что бесконечность бесконечности рознь и что справедливо в отношении одной бесконечности, нелепо в отношении другой. Здесь-то Аристотель и вводит актуальную и потенциальную бесконечность.
Аристотель отрицает актуальную бесконечность, под которой он понимает бесконечное чувственно воспринимаемое тело и вeличину. Он признает лишь потенциальную бесконечность. Величина может быть лишь потенциально бесконечной, превосходя все своей малостью, будучи непрерывно делимой (в отличие от числа, которое, имея предел в направлении к наименьшему, не имеет предела, будучи мыслимым, в направлении к наибольшему, величина имеет предел в отношении к наибольшему, но не имеет предела в отношении к наименьшему). Но и число не может быть актуально бесконечным.
Аристотель понимает бесконечность как процесс - не может быть бесконечного числа, но всегда может быть число, большее данного. Не может быть и наименьшей величины, но всегда может быть величина, меньшая данной. Эти весьма плодотворные мысли Аристотеля могли бы стать основой дифференциального исчисления, но так и не стали. Высшая математика также отрицает бесконечно малое и бесконечно большое как законченное, застывшее, она понимает бесконечно малое как то, что может быть меньше любой постоянной величины, а бесконечно большое как то, что может быть больше любой постоянной величины. Подводя этому итог, Аристотель говорит: "То, вне чего всегда есть что-нибудь, то и есть бесконечное". Все это не укладывается в ту статическую картину мира, о которой мы говорили выше в связи с математикой. Поэтому Аристотель относится к бесконечности со страхом, он говорит, что бесконечное непознаваемо и неопределенно.
Начнем с понятия бесконечности как результата сложения конечных величин. Вводя это понятие, Аристотель сразу же отбрасывает бесконечность пространства. Но время - бесконечно. С указанным различием связаны понятия актуальной и потенциальной бесконечности. Аристотель отвергает возможность чувственно воспринимаемогобесконечного по размерам тела (актуально бесконечного тела), но допускает существование потенциальной бесконечности. Ее нельзя понимать в том смысле, в каком, например, статуя потенциально содержится в меди. Такой взгляд означал бы, что потенциальная бесконечность в конце концов превращается в актуальную. Потенциально бесконечное все время остается конечным и все время меняется, причем этот процесс изменения может продолжаться как угодно долго.
"Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, и взятое всегда бывает конечным, но всегда разным и разным".
Актуальная бесконечность - это бесконечные размеры тела в тот момент, когда оно фигурирует как чувственно воспринимаемый объект. Иными словами, это бесконечное пространственное расстояние между пространственными точками, связанными в единый объект в некоторый момент времени. Это - чисто пространственное, одновременное многообразие. Таким одновременным многообразием бесконечных размеров реальное тело, по мнению Аристотеля, не может быть. Реальным эквивалентом бесконечности может быть бесконечное движение, процесс, происходящий в бесконечном времени и состоящий в бесконечном возрастании некоторой величины, все время остающейся конечной. Таким образом, реальным эквивалентом обладает понятие потенциальной бесконечности, протекающей во времени. Нет бесконечного "теперь", но есть бесконечная последовательность конечных "теперь".
Актуальная бесконечность - это некоторая обладающая реальным физическим бытием величина, достигшая бесконечного значения в данный момент. Если выражение "данный момент" понимать буквально, то под актуально бесконечным объектом следует подразумевать мир, существующий в течение мгновения, иначе говоря, пространственное многообразие. Аристотель, говоря об актуальной бесконечности, имеет обычно в виду бесконечное пространство, вернее, бесконечную протяженность реального чувственно постигаемого тела.
"А что бесконечное существует, уверенность в этом проистекает у исследователей прежде всего из пяти [оснований]: [1] из времени (ибо оно бесконечно); [2] из разделения величин (ведь и математики пользуются бесконечным); [3] далее, что только в том случае не прекратится возникновение и уничтожение, если будет бесконечное, откуда берется возникающее; [4] далее, из того, что ограниченное всегда граничит с чем-нибудь, так что необходимо, чтобы не было никакого предела, раз одно всегда необходимо граничит с другим [5]. Но больше всего и главнее всего - что составляет общую трудность для всех - на том основании, что мышление [никогда] не останавливается [на чем-нибудь] и число кажется бесконечным, и математические величины, и то, что находится за небом. Рассмотрение бесконечного имеет свои трудности, так как и отрицание его существования, и признание приводят ко многим невозможным [следствиям].
Далее, каким образом существует бесконечное: как сущность или как свойство, само по себе присущее некой природе? Или ни так, ни этак, но все же бесконечное существует - или как бесконечное [по величине], или как бесчисленное множество. Для физика же важнее 2<ма всего рассмотреть [вопрос], существует ли бесконечная чувственно-воспринимаемая величина.