Смекни!
smekni.com

Свойства бесконечной величины. Различие актуальной и потенциальной бесконечности (стр. 9 из 9)

Николай Кузанский использовал бесконечную величину для построения своей философской картины мира, выявил новые свойства бесконечной величины и сопоставил актуальную и потенциальную бесконечность. Он считал, что единое есть все, единому ничего не противоположно, следовательно единое тождественно бесконечному. Единое есть минимум, а бесконечное - максимум, поэтому налицо совпадение противоположностей. Николай Кузанский различает два вида бесконечного: негативно бесконечное и привативно бесконечное. "Только абсолютный максимум негативно бесконечен, только он есть то, чем может быть во всей потенции". Негативная бесконечность Бога - это бесконечность актуальная, то, что Николай Кузанский чаще всего называет абсолютным максимумом. Привативная же бесконечность скорее соответствует тому, что мы сегодня называем потенциальной бесконечностью. Вот такого рода конечностью, могущей возрастать без предела, но никогда не могущей превратиться в актуальную бесконечность, есть потенциальная бесконечность. Бесконечное - это то, больше чего ничего не может быть, Кузанский поэтому называет его "максимумом"; единое же - это "минимум". Актуальная бесконечность и есть совмещение противоположностей - единого и беспредельного. Н. Кузанский выявил, что свойство бесконечного числа к беспредельному увеличению превращает геометрические фигуры в бесконечную линию. То есть в бесконечности многообразие геометрических фигур есть единое. Также конечная линия делима, а бесконечная неделима, потому что у бесконечности, где максимум совпадает с минимумом, нет частей.

В1851 году была посмертно опубликована книга чешского математика и философа Б. Больцано "Парадоксы бесконечного", в которой он сделал первую попытку исследовать свойства актуальной бесконечности. Он впервые разработал теорию бесконечных величин, дал бесконечной величине определение, разработал ее свойства, указал на возможность ее исчисления, применил бесконечную величину в геометрии, привел доказательства своих взглядов. Больцано называл бесконечную величину бесконечным множеством, так как он не мог представить ее в виде числа, ведь по его словам число само по себе есть конечное. Больцано различал актуальную и потенциальную бесконечность. Под актуальной бесконечностью он понимал "количество большее, чем каждое конечное, т.е. количество такого рода, что каждое конечное многообразие представляет только часть его". Он исследовал свойства актуальной бесконечности. Потенциальная бесконечность определяется из следующего высказывания Больцано " я присоединяюсь к тем, кто находится в отрицательном отношении к этому понятию о величине, которая только бесконечно возрастает, но никогда не достигает бесконечности." Он попытался ответить на многие вопросы, связанные с таинственным бесконечным. В его книге были предвосхищены многие понятия теории бесконечных множеств, однако они не получили еще той точности и ясности, которая была придана им через два десятилетия в работах Г. Кантора.

Б. Больцано был гением, пролившем свет в неизвестную бесконечную величину, на ее свойства, но он не был принят современниками и его работы не воспринимались всерьез и не были изучены и использованы.

Исходная идея Кантора - это задание множества по содержанию. Множество может быть задано перечислением всех входящих в него элементов. Бесконечное множество не может быть задано таким способом. Но множество можно задать иначе, указав некоторые признаки, которыми должны обладать все элементы множества. Подобным образом, по содержанию, может быть задано и бесконечное множество.

Георг Кантор разделил потенциальную и актуальную бесконечности. Актуально бесконечным Кантор называет "такое количество, которое, с одной стороны, не изменчиво, но определенно и неизменно во всех своих частях и представляет истинную постоянную величину, а с другой в то же время превосходит по своей величине всякую конечную величину того же вида". Согласно определению Кантора, потенциально бесконечное "означает переменную конечную величину, растущую сверх всяких конечных границ.". Математическое потенциально бесконечное Кантор называет "несобственно-бесконечным".

Кантор вводит также арифметику бесконечности. Он определил операции сложения и умножения для бесконечных мощностей. Для бесконечных мощностей он установил и операцию возведения в степень с бесконечным показателем. Далеко не все законы обычной арифметики переносятся в область арифметики натуральных чисел. Кантор говорил, что законы арифметики бесконечности коренным образом отличаются от зависимостей, царящих в области конечного, а также свойства конечных и бесконечных множеств различны. Георгу Кантору принадлежит появление трансфинитных чисел, он ввел понятие мощность бесконечного множества, разделил счетные и несчетные бесконечные множества, ввел для бесконечных множеств взаимнооднозначное соответствие, что позволило оперировать этими понятиями. Георг Кантор - величайший математик, проливший свет в тайны бесконечного, он сделал наибольшее число открытий в этой области и поэтому велика его роль как в математике, так и в философии.

Потенциальная бесконечность абстрагируется от фактической неосуществимости неограниченного построения математических объектов, напр. натуральных чисел, и постулирует, что их ряд можно продолжать бесконечно. Неявно это понятие Б. употреблялось уже в антич. математике, но особое значение оно приобрело в период кризиса анализа бесконечно малых и в явном виде вошло в теорию пределов, где бесконечно малая стала рассматриваться как величина потенциальная, стремящаяся к нулю как своему пределу. Однако в последней четверти 19 в. было установлено, что теория пределов и последующая арифметизация анализа опираются на понятие актуальной бесконечности, которая была положена Г. Кантором в основание созданной им теории множеств. Поэтому место становящейся, потенциальной бесконечности в математике занимает бесконечность завершенная, актуальная. Однако такое уподобление бесконечного множества конечному впоследствии привело к парадоксам и вызвало новый кризис оснований математики. Выход из нее интуиционисты и конструктивисты видят в возвращении к идее потенциальной бесконечности, но большинство математиков пытаются сохранить канторовскую теорию множеств, исключая образование слишком обширных множеств путем специальных постулатов аксиоматической системы. Трудности, возникающие при рассмотрении математической бесконечности, по-видимому, связаны с противопоставлением бесконечного и конечного, которые выражают в идеализированной форме разные, но взаимосвязанные аспекты реальной бесконечности. Потенциальная бесконечность в абстрактном виде отображает становление и возникновение, актуальная бесконечность - его результат, бытие.

Вот какое путешествие по извилистым путям прошла человеческая мысль, пытаясь овладеть противоречивейшим понятием бесконечности, "приручить" его и использовать для познания действительности.

Список литературы

1. Асмус В.А. Античная философия. М: 1996. с.35-38, 47-48.

2. Больцано Б. Парадоксы бесконечного. Перевод Бурцева Б.И. Одесса, 2003, с.15-149.

3. Black Fire Pandemonium. Библиотекаhttp://khazarzar. skeptik.net/Апории Зенона. с.8-29.

4. Введение в философию. Учебное пособие для вузов под редакцией Фролова И.Т. М.: Республика 2004. с.24, 35-36, 89.

5. Виленкин Н.Я. В поисках бесконечности. АН СССР. М.: Наука 1983. с.48-75.

6. Гаранов П. С.500 шагов к мудрости. Кн.1. М.: 1996. с.35-40.

7. Кузанский Н. Об ученом незнании. Сочинения в 2 томах. М.: 1980. с.40-106.

8. Маковецкий А.О. Древнегреческий атомизм. Баку, 1946. с.8-31.

9. Молодший В.Н. Очерки по философским вопросам математики. М.: Просвещение, 1989. с.57-64.

10. Тажуризина З.А. Философия Николая Кузанского. М.: Изд-во МГУ, 1993. с.25-29, 34-37, 48-50.