Смекни!
smekni.com

Статистические методы анализа качества (стр. 9 из 9)

Для удобства подсчета вероятностей любое нормальное распределение с параметрами а и σ преобразуют к стандартному (нормированному) нормальному распределению, параметры которого а = 0, s = 1, то есть плотность

Значения функции f(х) можно найти в справочных таблицах или получить, используя готовые компьютерные программы.

Другим часто встречающимся в технике распределением непрерывной случайной величины является закон Рэлея. Он описывает распределение погрешностей формы и расположения поверхностей (биение, эксцентриситет, непараллельность, неперпендикулярность и т.п.), когда эти погрешности определяются радиусом кругового рассеяния н а плоскости.

Если на плоскости задана система координат Оху, то точка с координатами (х,у; отстоит от начала координат на расстояние координат х и у - нормально распределенная случайная величина, то г - случайная величина, имеющая распределение Рэлея. Плотность вероятности этого распределения:

Для дискретных случайных величин наиболее распространенным является биномиальное распределение. Биномиальный закон распределения описывает вероятность того, что в выборке объема п некоторый признак встретится ровно k раз. Точнее, пусть проводится п независимых испытаний ("опытов"), в каждом из которых признак может проявиться ("успех опыта") с вероятностью р. Рассмотрим случайную величину Х - число "успехов" в данной серии испытаний. Это дискретная случайная величина, принимающая значения О, 1,... , п, причем вероятность того, что Х примет значение, равное k, то есть что ровно в k испытаниях будет зафиксирован исследуемый признак, вычисляется по формуле

Формула (6.3.13) называется формулой Бернулли, а закон распределения случайной величины X, задаваемый этой формулой, называется биномиальным, Параметрами биномиального распределения являются число опытов n и вероятность "успеха" р. Но так как нас интересуют среднее значение и разброс случайной величины относительно своего среднего значения, то отметим, что для биномиального распределения математическое ожидание т → up . а дисперсия →прц .

Биномиальный закон описывает в самой общей форме осуществление признака в повторной выборке (в частности, появление несоответствий).

Например, пусть в партии из N деталей ровно М имеют внешний дефект (неравномерность окраски). При контроле из партии извлекается деталь, фиксируется наличие либо отсутствие дефекта, после чего деталь извращается обратно. Если эти действия проделаны n раз, то вероятность того, что при этом k раз будет зарегистрирован дефект, вычисляется по формуле:

Если же извлеченная деталь не возвращается обратно (или все п деталей вынимаются одновременно), то вероятность того, что среди вынутых п деталей окажется ровно k с дефектом равна

В этом случае случайная величина Х - количество несоответствующих деталей в выборке задается гипергеометрическим законом распределения. Этот закон описывает осуществление признака в бесповторной выборке.

Когда N очень велико по сравнению с п (то есть объем генеральной совокупности по крайней мере на два порядка больше объема выборки), то несущественно, какая проводится выборка - бесповторная или повторная, ТО есть в этом случае вместо формулы (6.3.16) можно использовать формулу (6.3.15).

При больших значениях п формула Бернулли (6.3.13) заменяется формулой

которая фактически совпадает с формулой (6.3.1), то есть с нормальным законом распределения, параметры которого а = пр. s = npq.

Для распределения Пуассона математическое ожидание равно l,Дисперсия также равна l.

На рисунке 6.4 представлены два биномиальных распределения P^(k). У одного п = 30; р = 0,3 - оно близко к нормальному распределению с математическим ожиданием т, = пр =-- 9. У другого п = 30;р = 0,05 - оно близко к распределению Пуассона с математическим ожиданием mk = пр = 1,5.


СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Статистические методы повышения качества (Пер. с англ./ Под ред. С. Кумэ).-М.: Финансы и статистика, 1990.-304с.

2. Статистическое управление процессами (SPC). Руководство. Пер. с англ. (с дополн.). - Н.Новгород: АО НИЦ КД, СМЦ «Приоритет», 1997г.

3. Статистический контроль качества продукции на основе принципа распределения приоритетов/В.А. Лапидус, М.И. Розно, А.В. Глазунов и др.-ВЙ.: Финансы и статистика, 1991 .-224с.

4. Миттаг Х.-И.. Ринне X. Статистические методы обеспечения качества М.: Машиностроение, 1995.-616с.

5. ГОСТ Р 50779.0-95 Статистические методы. Основные положения.

6. ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования.

7. ГОСТ Р 50779.50-95 Статистические методы. Приемочный контроль качества по количественному признаку. Общие требования.

8. ГОСТ Р 50779.51-95 Статистические методы. Непрерывный приемочный контроль качества по альтернативному признаку.

9. ГОСТ Р 50779.52-95 Статистические методы. Приемочный контроль качества по альтернативному признаку.

10. ИСО 9000-ИСО 9004. ИСО 8402. Управление качеством продукции ( пер. с англ.).-М.: Изд-во стандартов, 1988.-96с.

11. ИСО 9000. Международные стандарты.