Смекни!
smekni.com

Тема 12. Оптимальные линейные цифровые фильтры (стр. 1 из 5)

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 12. ОПТИМАЛЬНЫЕ ЛИНЕЙНЫЕ ЦИФРОВЫЕ ФИЛЬТРЫ.

Как много дел считалось невозможными, пока они не были осуществлены.

Гай Плиний Секунд (философ).

Специалисты в науке подобны старателям. Стоит одному найти крупинку золота, как другие выроют в этом месте котлован. А тема оптимальности, это вообще золотое Эльдорадо, можно копать в любом направлении.

Владимир Старцев. Уральский геофизик, ХХ в.

Содержание

Введение.

1. Случайные процессы и шумы. Белый шум. Модель белого шума. Фильтрация белого шума.

2. Критерии построения оптимальных фильтров. Среднее квадратическое отклонение. Амплитудное отношение сигнал/шум. Энергетическое отношение сигнал/шум.

3. Фильтр Колмогорова-Винера. Условие оптимальности фильтра. Система линейных уравнений фильтра. Частотная характеристика фильтра. Задание мощности шумов. Эффективность фильтра. Пример расчета оптимального фильтра воспроизведения сигнала. Фильтры прогнозирования и запаздывания.

4. Оптимальные фильтры сжатия сигналов. Условие оптимальности. Частотная характеристика. Примеры использования.

5. Фильтр обнаружения сигналов. Частотная характеристика. Система линейных уравнений. Эффективность фильтра. Согласованный фильтр. Обратный фильтр.

6. Энергетический фильтр. Критерий оптимальности. Расчет векторов операторов фильтров.

ВВЕДЕНИЕ

Результаты практических измерений, подлежащие обработке, содержат определенный полезный сигнал на фоне различного рода помех (шумов), при этом спектр помех в общем случае представлен по всему интервалу главного частотного диапазона и наложен на спектр полезного сигнала. В этих условиях ставится задача реализации оптимальных фильтров, которые позволяют достаточно надежно производить обнаружение сигнала, наилучшим образом выделять сигнал на фоне помех или подавлять помехи без существенного искажения сигнала.

Главным критерием при проектировании оптимальных фильтров, как правило, является минимизация среднеквадратичной ошибки восстановления полезного сигнала. Линейные оптимальные фильтры, которые рассматриваются в настоящей теме, обычно базируются на оптимальном фильтре Колмогорова-Винера.

12.1. случайные процессы и шумы /12/.

Случайные процессы и шумы описываются функциями автокорреляции и спектрами мощности. Модели случайных процессов и сигналов с заданными статистическими характеристиками обычно получают фильтрацией белого шума.

Белый шум является стационарным случайным процессом q(t), у которого автокорреляционная функция описывается дельта - функцией Дирака, спектральная плотность мощности не зависит от частоты и имеет постоянное значение Wq(f) = s2, равное дисперсии значений q(t). Все спектральные составляющие белого шума имеют одинаковую мощность. По существу, это идеализированный случайный процесс с бесконечной энергией. Но в случае постоянства спектральной плотности мощности случайного процесса в конечном диапазоне частот такая идеализация позволяет достаточно просто разрабатывать оптимальные методы фильтрации. Многие помехи в радиотехнике, в технике связи и в других отраслях, в том числе в информатике, рассматривают как белый шум, если эффективная ширина спектра сигналов Bs много меньше эффективной ширины спектра шумов Bq, а спектральная плотность мощности шумов слабо изменяется в интервале спектра сигнала. Понятие "белый шум" определяет только спектральную характеристику случайного процесса и под это понятие подпадают любые случайные процессы, имеющие равномерный энергетический спектр и различные законы распределения.

Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-В, то спектральная плотность шума задается в виде:

Wq(f)=s2, 0£ f £B; Wq(f)=0, f > B, (12.1.1)

при этом корреляционная функция шума определяется выражением:

Rq(t)= s2 B×sin(2pBt)/2pBt. (12.1.2)

Эффективный интервал корреляции:

Tk = 2

|Rq(t)|dt /Rq(0). (12.1.3)

Рис. 12.1.1. Функции корреляции белого

шума в частотном интервале 0-В.

Реальный интервал корреляции целесообразно определять по ширине главного максимума функции Rq(t) (значения t при первых пересечениях нулевой линии), в котором сосредоточена основная часть энергии шумов, при этом Tk = 1/В и BTk = 1.

Как следует из всех этих выражений и наглядно видно на рис. 12.1.1, при ограничении частотного диапазона в шумах появляется определенная корреляция между значениями. Чем меньше частотный диапазон шумов, тем больше их радиус корреляции. Ограничение шумов определенным частотным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом корреляционная функция импульсного отклика фильтра свертывается с дельта – функцией белого шума.

Модель белого шума q(t) можно формировать как случайную по времени (аргументу) последовательность дельта - импульсов d(ti) со случайными амплитудными значениями ai:

q(t) = Si ai d(t-ti), (12.1.4)

которая удовлетворяет условиям статистической однородности: постоянное среднее число импульсов в единицу времени и статистическая независимость появления каждого импульса от предыдущих. Такой поток импульсов называют пуассоновским, он является некоррелированным и имеет равномерный спектр плотности мощности:

Wq(w) = c2 = Nsa2,

где N - число импульсов на интервале Т реализации случайного процесса, sa2 -дисперсия амплитуд импульсов.

Фильтрация белого шума. Если на входе фильтра с импульсным откликом h(t) действует белый шум q(t), то сигнал на выходе фильтра:

g(t) = h(t) ③ q(t) = h(t) ③ Si ai d(t-ti) = Si ai h(t-ti), (12.1.5)

т.е. выходной сигнал будет представлять собой последовательность сигналов импульсной реакции фильтра h(t) с амплитудой ai, при этом автокорреляционная функция и спектр мощности выходного потока также становятся подобными ФАК и спектру мощности импульсной реакции фильтра, и в первом приближении определяются выражениями:

Rg(t)

N sa2 Rh(t) = c2 Rh(t), (12.1.6)

Wg(w)

N sa2 |H(w)|2 = c2 |H(w)|2. (12.1.7)

Этот результат известен как теорема Кэмпбелла.

12.2. Критерии построения оптимальных фильтров.

В практике обработки данных используются три основных критерия построения оптимальных фильтров: минимум среднего квадратического отклонения профильтрованного сигнала от его действительного или заданного значения, максимум отношения сигнал/шум и максимум энергетического отношения сигнал/шум на выходе фильтра. Критерии исходят из вероятностно - статистической модели обрабатываемых данных. При анализе и синтезе фильтров используется аддитивная модель входного сигнала: x(k) = s(k)+q(k), где s(k) - полезная составляющая сигнала, q(k) - составляющая шумов и помех. Синтез оптимальных фильтров производится с максимальным использованием известной информации как о сигналах, которые необходимо выделить, так и о шумах и помехах. Как правило, используется информация о природе полезного сигнала и шума, об их спектральном составе, о корреляционных и взаимных корреляционных характеристиках. Наличие определенных особенностей (различий) в характеристиках сигнала и шума позволяет реализовать фильтр вообще и оптимальный фильтр в частности.

В геофизической практике априорные данные о полезных сигналах являются достаточно определенными, особенно для активных методов геофизики (сейсмические методы, электроразведка на переменном токе, индукционные методы ядерной геофизики и пр.). Определение характеристик действующих помех представляет собой более сложную проблему, но даже при полной неопределенности можно допустить, что помеха является нормальным стационарным процессом с нулевым средним значением.

Среднее квадратическое отклонение. При наличии помех точное выделение полезного сигнала методами линейной фильтрации, как правило, невозможно. Результат фильтрации

y(k) = h(n) ③ x(k-n) (12.2.1)

отличается от s(k) на величины e(k) = y(k)-s(k), которые являются абсолютными значениями погрешности воспроизведения полезного сигнала по координатам k. Качество фильтра оценивается средним значением квадрата величины e(k):

. (12.2.2)

Во многих задачах анализа данных не требуется восстановления исходной формы сигнала s(k), т.к. в процессе его дальнейшей обработки осуществляется преобразование сигнала s(k) в сигнал z(k), форма которого может быть более удобной для извлечения (измерения) каких-либо информационных параметров сигнала (амплитуды, частоты, длительности и т.п.). В этом случае фильтр может проектироваться непосредственно на получение выходного сигнала z(k). Качество таких формирующих фильтров оценивается средним значением квадрата величины e(k) получения сигнала заданной формы:

. (12.2.2')

Выражения (12.2.2) дают возможность определить значения h(k) фильтра по критерию минимума среднего квадратического отклонения выходного сигнала от его действительной или заданной формы.