Наличие многих общих черт у технологий FastEthernet и Ethernet дает простую общую рекомендацию. FastEthernet, следует применять в тех организациях и в тех частях сетей, где до этого широко применялся 10-мегабитный Ethernet. Однако сегодняшние условия или же ближайшие перспективы требуют более высокой пропускной способности в таких частях сетей. При этом сохраняется весь опыт обслуживающего персонала, привыкшего к особенностям и типичным неисправностям сетей Ethernet. Кроме того, можно по-прежнему использовать средства анализа протоколов, работающие с агентами MIB-II, RMONMIB и привычными форматами кадров.
В семействе Ethernet технология FastEthernet занимает промежуточное положение между Ethernet 10 Мбит/с и GigabitEthernet.
Поэтому в крупной локальной сети, в которой оправдано создание трех уровней иерархии сетевых устройств, технологии FastEthernet отведен средний уровень - сетей отделов. Но это, конечно, не исключает ее применения и на нижних этажах, в сетях рабочих групп, причем не только для подключения серверов, но и быстрых рабочих станций.
При использовании агрегированных транковых соединений, обеспечивающих скорости N x 100 Мбит/с, технология FastEthernet может применяться и для создания магистральных связей в сетях масштаба здания и даже кампуса.
Что же касается разделяемых сегментов FastEthernet, то они конкурируют по стоимости и возможностям с коммутируемыми сегментами Ethernet 10 Мбит/с. При наличии 10 рабочих станций в сегменте и в том, и в другом случаях каждой рабочей станции достается в среднем по 10 Мбит/с.
Преимущественная область применения разделяемых сегментов FastEthernet достаточно ясна.
Это объединение близко расположенных друг от друга компьютеров, трафик которых имеет ярко выраженный пульсирующий характер с большими, но редкими всплесками.
Большие всплески хорошо передаются незагруженным каналом 100 Мбит/с, а редкое их возникновение приводит к возможности
совместного использования канала без частого возникновения коллизий. Типичным примером такого трафика является трафик файлового сервиса, электронной почты, сервиса печати, Коммутируемые сегменты Ethernet 10 Мбит/с могут предоставить каждому узлу гарантированные 10 Мбит/с, но не больше. Так что для тех случаев, когда важно изредка предоставлять конечному узлу больше 10 Мбит/с, разделяемые сегменты FastEthernet оказываются предпочтительным решением.
Выходит, что переход от технологии Ethernet 10 Мбит/с к технологии FastEthernet 100 Мбит/с все таки необходим.
Структура существующей локально- вычислительной сети ИРЦ ОАО “Ростелеком ММТ базируется, в основном, на концентраторах разделяемого Ethernet 10 Base-T и на коммутаторе BayStack 301 на 22 порта 10 Base-T и 2 порта Fast Ethernet 100 Base-TX.
Необходимость построения ЛВС ИРЦ заключалась в упрощении процесса получения и обработки информации, а именно данных о междугородних и международных телефонных переговорах по предприятиям и квартирному сектору.
Вся информация по переговорам, накапливаемая на телефонных узлах, поступает в информационно-расчетный центр, где и происходит ее обработка. А именно:
· выставление счетов за междугородние и международные телефонные переговоры по предприятиям
· выставление счетов за междугородние и международные телефонные переговоры по квартирному сектору
· проверка задолженности абонентов
· предоставление услуги “ Экспресс счет ”
· ведение и оформление претензий
и т. пр.
Поступившая информация хранится на серверах, находящихся в Машинном зале ИРЦ.
Сервер 1 Tricord на базе процессора 486 (оперативная память
16 Mb, объем жесткого диска 40 Gb, ОС- Novell 3.2)
Информация, хранимая на сервере:
- справочная информация по выставлению счетов за Международные ТР и Междугородние ТР по предприятиям
- массивы счетов за один год
Сервер 2 Tricord на базе процессора 486 (оперативная память
16 Mb, объем жесткого диска 2 Gb, ОС- Novell 4.0)
Информация, хранимая на сервере:
- печать счетов квартирного сектора
- ввод оплаты
С приходом новых технологий обмена данными, процесс обработки информации значительно ускорился и занимает намного меньше времени, нежели до этого.
Следовательно, происходит увеличение обработанной информации, отсюда повышается и производительность.
Структура локально- вычислительной сети ИРЦ построена на технологии Ethernet 10 Base-T.
Что в свое время обеспечивало хорошую производительность, но со временем произошло увеличение числа абонентов, пользующихся услугами междугородней международной связи, вследствие чего возникли проблемы с сетевой архитектурой:
· пользователям не хватает пропускной способности сети;
· малая скорость ответа серверов на запросы;
· необходим переход на более скоростное чем 10 Мбит/с выделенное соединение, без замены всего оборудования;
· обеспечение высокой надежности сети;
· удобное управление сетью
· увеличение объема получаемой информации
Для решения этих проблем возникла необходимость усовершенствования локально- вычислительной сети ИРЦ, что и рассматривается в данном дипломном проекте.
Новый вариант построения локально-вычислительной сети информационно-расчетного центра филиала ОАО “Ростелеком”- ММТ представляет собой:
· Увеличение объема памяти серверов;
· Переход на более скоростную, чем Ethernet, технологию Fast Ethernet 100 Мбит/с;
· Организацию Виртуальных сетей (VLAN), трафик которых на канальном уровне полностью изолирован от других узлов сети;
· Осуществление Агрегирования каналов (Транкинга) используя несколько активных параллельных каналов одновременно для повышения пропускной способности и надежности сети.
В проекте нового варианта построения ЛВС ИРЦ сервера представляют собой:
Сервер 1 HewlettPackardLH3 (оперативная память 256 Mb, объем жесткого диска 140 Gb, ОС- Novell 3.2)
Информация, хранимая на сервере:
- справочная информация по выставлению счетов за Международные ТР и Междугородние ТР по предприятиям
- массивы счетов за пять лет
+
- комплекс прикладного программного обеспечения
- просмотр базы
- выписка повторного счета
- внесение оплаты
- “экспресс счет” по предприятиям
- ведение и оформление претензий
Сервер 2 ALR 8200 (оперативная память 256 Mb, объем жесткого диска 50 Gb, ОС- Novell 5.0)
Информация, хранимая на сервере:
- печать счетов квартирного сектора
- ввод оплаты
+
- ввод ярлыков коммутаторных залов
- картотека телефонов с адресными данными
Сервер 3 ALR 8200 (оперативная память 1 Gb, объем жесткого диска 100 Gb, ОС- WindowsNT)
Информация, хранимая на сервере:
- лицевые карточки абонентов квартирного сектора
- ведение договоров
- печать “экспресс счета”
- проверка задолженностей
Что же дает нам совершенствование технологии Ethernet?
Основное направление совершенствования технологий локальных сетей связано с технологией Ethernet и это не удивительно.
В соответствии с данными исследовательской компании InternationalDataCorporation (IDC) более 85% всех сетевых соединений к концу 1997 года являлись соединениями Ethernet, представляя более чем 118 миллионов присоединенных к сетям персональных компьютеров, рабочих станций и серверов. Поэтому создание высокоскоростных технологий, максимально совместимых с Ethernet, представляло собой важную задачу сетевой индустрии. Решение этой задачи сулило огромные выгоды и преимущества для сетевых пользователей, интеграторов, администраторов, эксплуатации и, естественно, для производителей.
В 1995 году комитет IEEE принял спецификацию FastEthernet в качестве стандарта. Сетевой мир получил технологию, с одной стороны, решающую самую болезненную проблему- нехватку пропускной способности на нижнем уровне сети, а с другой стороны, очень легко внедряющуюся в существующие сети Ethernet.
Легкость внедрения FastEthernet объясняется следующими факторами:
· Общий метод доступа позволяет использовать в сетевых адаптерах FastEthernet до 80% микросхем адаптеров Ethernet;
· Драйверы также содержат большую часть кода для адаптеров Ethernet, а отличия вызваны новым методом кодирования данных на линии (4B/5B или 8B/6T) и наличием полнодуплексной версии протокола;
· Формат кадра остался прежним, что дает возможность анализаторам протоколов применять к сегментам FastEthernet те же методы анализа, что и для сегментов Ethernet, лишь механически повысив скорость работы.
Отличия FastEthernet от Ethernet сосредоточены в основном на физическом уровне. Разработчики стандарта FastEthernet учли тенденции развития структурированных кабельных систем.
Они реализовали физический уровень для всех популярных типов кабелей, входящих в стандарты на структурированные (такие как EIA/TIA 568A) и реально выпускаемые кабельные системы.
Существует три варианта физического уровня FastEthernet:
· 100Ваsе-ТХ для двух парного кабеля на неэкранированной витой паре UTPCategory 5 (или экранированной витой паре STP Туре1);