Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 2 из 9)

В методе хорд условием окончания итераций является:

условие близости двух последовательных приближений:

;

условие малости невязки

(величина F (xn) есть невязка, полученная на n-й итерации, а
-число, с заданной точностью которого необходимо найти решение).

1.2 Практическое применение метода хорд

Исследование функции

Возьмем для исследования функцию

и определим точность решения как
=0,001.

Рисунок 2 - График функции

Визуально определяем границы отрезка, на котором находится корень. Выделяем отрезок [a,b], (а= -0,45, b= -0,3).

1. Проверяем существование корня на отрезке по условию

:


Убедимся, что функция принимает на концах указанных отрезков значения разных знаков

0,36<0

Условие выполнено, следовательно, на данном промежутке корень есть.

2. Далее исследуем функцию на монотонность:

75.1115>0

Экстремумов на выбранном отрезке нет.

3. Проверяем функцию на единственность корня

67.86>0

На данном промежутке имеется только один корень

4. Выбор точки х0 зависит от того совпадает ли её знак со знаком второй производной данной функции.

>0

Из условия следует, что х0=a=-0.45, тогда за х1 принимаем b - х1= b=-0.3

5. Исходя из графика мы приняли за x0=-0.45 и x1=-0.3. Найдем значение функции в этих точках:

Формула для решения

Условие выполнено, необходимая точность достигнута. Итерационный процесс можно прекратить. Добиться указанной точности нам удалось на 4-ой проведенной итерации.

Исследование функции

Возьмем для исследования функцию

и определим точность решения как
=0,001.

Рисунок 3 - График функции


Визуально определяем границы отрезка, на котором находится корень. Выделяем отрезок [a,b], (а=-0,4, b=0,1).

1. Проверяем существование корня на отрезке по условию

:

Убедимся, что функция принимает на концах указанных отрезков значения разных знаков

0,04327<0

Условие выполнено, следовательно, на данном промежутке корень есть.

2. Далее исследуем функцию на монотонность:

Экстремумов на выбранном отрезке нет.

3. Проверяем функцию на единственность корня:

>0

На данном промежутке имеется только один корень.

4) Выбор точки х0 зависит от того совпадает ли её знак со знаком второй производной данной функции.

>0

Из условия следует, что х0=a=-0.4, тогда за х1 принимаем b - х1= b=0.1

5. Исходя из графика мы приняли за x0=-0.4 и x1=0.1. Найдем значение функции в этих точках:

Формула для решения