Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 5 из 9)

Выполним итерации по расчетной формуле


x=  (x) =x - f (x)):

Погрешность найденного значения:

Программная реализация итерационных методов

Рисунок 11 - Решение уравнения методом касательных и методом хорд

2. Решение нелинейных уравнений методом интерполирования

Интерполяция является одним из способов аппроксимации функции. Смысл аппроксимации заключается в том, что одна функция заменяется другой в некотором смысле близкой. Такая задача возникает по многим соображениям, в частности из-за удобства вычисления значений функции, вычисления производных и т.д.

Пусть в точках

расположенных на отрезке [a, b] и попарно различных, задана таблица значений некоторой функции
. Задача интерполяции состоит в построении функции φ (х), удовлетворяющей условию
. При этом предполагается, что среди значений
нет одинаковых, т.е.
при
. Другими словами, ставиться задача о построении функции φ (х), график которой проходит через заданные точки
. Указанный способ приближения функции принято называть интерполяцией (или интерполированием), а точки
- узлами интерполяции.

Значение функции

вычисляется, когда известны функция f. Но эти значения могут быть получены, например экспериментальным путем, как значение некой неизвестной функции.

Рисунок 12 - Интерполяция

Таким образом, близость интерполирующей функции (сплошная линия) к заданной функции состоит в том, что их значения совпадают на заданной системе точек. Интерполирующая функция φ (х) может строиться сразу для всего рассматриваемого интервала измерения х или отдельно для разных частей этого интервала. В первом случае говорят о глобальной интерполяции, во втором - о кусочной (или локальной) интерполяции.

2.1 Многочлен Лагранжа

Рассмотрим случай глобальной интерполяции, т.е. построение интерполяционного многочлена, единого для всего отрезка

.

Будем искать интерполяционный многочлен в виде линейной комбинации многочленов степени n:

При этом потребуем, чтобы каждый многочлен

обращался в нуль во всех узлах интерполяции, за исключением одного (i-го), где он должен равняться единице. Этим условиям при i=0 отвечает многочлен вида:

.

По аналогии получим:

,

,

,

Подставляя полученные выражения в

, находим:

.

Эта формула определяет интерполяционный многочлен Лагранжа.

Обратное интерполирование заключается в установлении зависимости

.

Задача обратного интерполирования заключается в том, чтобы по заданному значению функции y определить соответствующее значение аргумента x.

Функция выглядит следующим образом:

Ln (y) =

2.2 Интерполяция сплайнами

Повышение точности приближения гладкой функции благодаря увеличению степени интерполяционного многочлена возможно, но связано с существенным повышением сложности вычисления. К тому же использование многочленов высокой степени требует специальных мер предосторожности уже при выборе формы их записи, и вычисления сопровождаются накоплением ошибок округления.

Поэтому на практике предпочитают кусочно-полиномиальную интерполяцию с использованием многочленов невысокой степени. Однако этот способ приближения имеет недостаток: в точках "стыка" двух соседних многочленов производная, как правило, имеет разрыв. Часто это обстоятельство не играет существенной роли. Вместе с тем нередко требуется, чтобы аппроксимирующая функция была гладкой и тогда простейшая кусочно-полиномиальная интерполяция становится неприемлемой.

Естественная потребность в наличии аппроксимирующих функций, которые сочетали бы в себе локальную простоту многочлена невысокой степени и глобальную на всем отрезке [a, b] гладкость, привела к появлению в 1946 г. так называемых сплайн - функций или сплайнов - специальным образом построенных гладких кусочно-многочленных функций. Получив в 60-х годах распространение как средство интерполяции сложных кривых, сплайны к настоящему времени стали важной составной частью самых различных вычислительных методов, и нашли широчайшее применение в решении разнообразных научно-технических и инженерных задач.

Дадим строгое определение сплайна. Пусть отрезок [a, b] разбит точками

на n частичных отрезков
. Сплайном степени т называется функция
,
обладающая следующими свойствами:

функция

непрерывна на отрезке [a, b] вместе со всеми своими производными

до некоторого порядка р,

на каждом частичном отрезке

функция
совпадает с некоторым алгебраическим многочленом
степени m.

Разность т - р между степенью сплайна и наивысшим порядком непрерывной на отрезке [a, b] производной называется дефектом сплайна.

Простейший пример сплайна дает непрерывная кусочно-линейная функция (рисунок 13), являющаяся сплайном первой степени (линейным сплайном) с дефектом, равным единице. Действительно, на отрезке [a, b] сама функция

(нулевая производная) непрерывна. В то же время на каждом частичном отрезке
совпадает с некоторым многочленом первой степени.

Рисунок 13 - Кусочно-линейная функция

Наиболее широкое распространение на практике получили сплайны

третьей степени (кубические сплайны) с дефектом, равным 1 или 2. Такие сплайны на каждом из частичных отрезков [

] совпадают с кубическим многочленом:

и имеют на отрезке [a, b] по крайней мере одну непрерывную производную

.

Формула кубического сплайна:

Полученный кубический сплайн в этом случае, очевидно, что не прерывен с первой производной, но непрерывность второй производной не гарантируется, т.е. дефект интерполяционного сплайна = 2. Если этот сплайн имеет непрерывную вторую производную на отрезке [a, b], т.е. имеет дефект 1, то такой сплайн носит название глобального.