Выполним итерации по расчетной формуле
x= (x) =x - f (x)):
Погрешность найденного значения:
Программная реализация итерационных методов
Рисунок 11 - Решение уравнения методом касательных и методом хорд
Интерполяция является одним из способов аппроксимации функции. Смысл аппроксимации заключается в том, что одна функция заменяется другой в некотором смысле близкой. Такая задача возникает по многим соображениям, в частности из-за удобства вычисления значений функции, вычисления производных и т.д.
Пусть в точках
Значение функции
Рисунок 12 - Интерполяция
Таким образом, близость интерполирующей функции (сплошная линия) к заданной функции состоит в том, что их значения совпадают на заданной системе точек. Интерполирующая функция φ (х) может строиться сразу для всего рассматриваемого интервала измерения х или отдельно для разных частей этого интервала. В первом случае говорят о глобальной интерполяции, во втором - о кусочной (или локальной) интерполяции.
Рассмотрим случай глобальной интерполяции, т.е. построение интерполяционного многочлена, единого для всего отрезка
Будем искать интерполяционный многочлен в виде линейной комбинации многочленов степени n:
При этом потребуем, чтобы каждый многочлен
По аналогии получим:
Подставляя полученные выражения в
Эта формула определяет интерполяционный многочлен Лагранжа.
Обратное интерполирование заключается в установлении зависимости
Задача обратного интерполирования заключается в том, чтобы по заданному значению функции y определить соответствующее значение аргумента x.
Функция выглядит следующим образом:
Ln (y) =
Повышение точности приближения гладкой функции благодаря увеличению степени интерполяционного многочлена возможно, но связано с существенным повышением сложности вычисления. К тому же использование многочленов высокой степени требует специальных мер предосторожности уже при выборе формы их записи, и вычисления сопровождаются накоплением ошибок округления.
Поэтому на практике предпочитают кусочно-полиномиальную интерполяцию с использованием многочленов невысокой степени. Однако этот способ приближения имеет недостаток: в точках "стыка" двух соседних многочленов производная, как правило, имеет разрыв. Часто это обстоятельство не играет существенной роли. Вместе с тем нередко требуется, чтобы аппроксимирующая функция была гладкой и тогда простейшая кусочно-полиномиальная интерполяция становится неприемлемой.
Естественная потребность в наличии аппроксимирующих функций, которые сочетали бы в себе локальную простоту многочлена невысокой степени и глобальную на всем отрезке [a, b] гладкость, привела к появлению в 1946 г. так называемых сплайн - функций или сплайнов - специальным образом построенных гладких кусочно-многочленных функций. Получив в 60-х годах распространение как средство интерполяции сложных кривых, сплайны к настоящему времени стали важной составной частью самых различных вычислительных методов, и нашли широчайшее применение в решении разнообразных научно-технических и инженерных задач.
Дадим строгое определение сплайна. Пусть отрезок [a, b] разбит точками
функция непрерывна на отрезке [a, b] вместе со всеми своими производными
на каждом частичном отрезке функция
совпадает с некоторым алгебраическим многочленом
степени m.
Разность т - р между степенью сплайна и наивысшим порядком непрерывной на отрезке [a, b] производной называется дефектом сплайна.
Простейший пример сплайна дает непрерывная кусочно-линейная функция (рисунок 13), являющаяся сплайном первой степени (линейным сплайном) с дефектом, равным единице. Действительно, на отрезке [a, b] сама функция (нулевая производная) непрерывна. В то же время на каждом частичном отрезке
совпадает с некоторым многочленом первой степени.
Рисунок 13 - Кусочно-линейная функция
Наиболее широкое распространение на практике получили сплайны третьей степени (кубические сплайны) с дефектом, равным 1 или 2. Такие сплайны на каждом из частичных отрезков [
и имеют на отрезке [a, b] по крайней мере одну непрерывную производную .
Формула кубического сплайна:
Полученный кубический сплайн в этом случае, очевидно, что не прерывен с первой производной, но непрерывность второй производной не гарантируется, т.е. дефект интерполяционного сплайна = 2. Если этот сплайн имеет непрерывную вторую производную на отрезке [a, b], т.е. имеет дефект 1, то такой сплайн носит название глобального.