Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 7 из 9)

Где

- некоторое число, Е - единичная матрица,
.

Получившаяся система эквивалентна исходной системе и служит основой для построения метода простой итерации.

Выберем некоторое начальное приближение

и поставим в правую часть системы:

Поскольку

не является решением системы, в левой части получится некоторый столбец
, в общем случае отличный от
. Полученный столбец
будем рассматривать в качестве следующего (первого) приближения к решению. Аналогично, по известному k-му приближению можно найти (k+1) - е приближение:

Эта формула и выражает собой метод простой итерации. Для ее применения нужно задать неопределенный пока параметр

. От значения
зависит, будет ли сходится метод, а если будет, то какова будет скорость сходимости, т.е. как много итераций нужно совершить для достижения требуемой точности. В частности справедлива следующая теорема.

Теорема. Метод простой итерации сходится тогда и только тогда, когда все собственные числа матрицы

по модулю меньше единицы.

Для некоторых типов матрицы А можно указать правило выбора

, обеспечивающее сходимость метода и оптимальную скорость сходимости. В простейшем случае
можно положить равным некоторому постоянному числу, например, 1, 0.1 и т.д.

3.2 Метод Зейделя

Этот метод можно проиллюстрировать на примере решения системы:

a11x1+a12x2+a13x3=b1

a21x1+a22x2+a23x3=b2

a31x1+a32x2+a33x3=b3

Предположим, что диагональные элементы a11, a22, a33 отличны от нуля (в противном случае можно переставить уравнения). Выразим неизвестные х1, х2, х3 соответственно из первого, второго и третьего уравнений системы:


Зададим некоторые начальные (нулевые) приближения значений неизвестных: х11 (0), х22 (0), х33 (0). Подставляя эти значения в правую часть выражения (‘1), получаем новое (первое) приближение для х1:

Используя это значение для х1 и приближение х3 (0) для х3, находим из (‘2) первое приближение для х2:

.

И наконец, используя вычисленные значения х11 (1), х22 (1), находим с помощью выражения (‘3) первое приближение для х3:

На этом заканчивается первая итерация решения системы (‘1) (‘2) (‘3). Используя теперь значения х1 (1), х2 (1), х3 (1), можно таким же способом провести вторую итерацию, в результате которой будут найдены вторые приближения к решению х11 (2), х22 (2), х33 (2) и т.д.

Приближение с номером с k можно вычислить, зная приближение с номером k-1, как


Итерационный процесс продолжается до тех пор, пока значения х1 (k), х2 (k), х3 (k) не станут близкими с заданной погрешностью к значениям х1 (k-1), х2 (k-1), х3 (k-1).

3.3 Практическое применение метода простых итераций при решении СЛАУ

Решим систему линейных уравнений методом простых итераций с точностью равной

.

Выполним проверку на условие сходимости:


Условие выполнено, можно приступать к вычислению нулевого шага:

Начнем итерационный процесс:

Проверим выполняется ли условие остановки итерационного процесса:

Сходимость в сотых долях имеет место уже на 4-ом шаге, тогда можно принять:

3.4 Практическое применение метода Зейделя при решении СЛАУ

Решим ту же систему линейных уравнений методом Зейделя с той же точностью:

.

Проверку на условие сходимости мы выполнили ранее, при решении методом простых итерации.

Условие сходимости выполнено на 3-ем шаге.

Корнями уравнения можно принять:

3.5 Программная реализация итерационных методов решения СЛАУ

Рисунок 17 - Решение системы уравнений методом простых итераций.


Рисунок 18 - Решение уравнения методом Зейделя

4. Сравнительный анализ различных методов численного дифференцирования и интегрирования

4.1 Методы численного дифференцирования

Необходимость численного дифференцирования может возникнуть при необходимости исследований функций заданных табличным образом, кроме тех случаев, когда вычисление производной численно может оказаться проще, чем дифференцирование. Предположим, что в окрестности точки xi функция F (x) дифференцируема достаточное число раз. Исходя из определения производной: