Смекни!
smekni.com

Нейрокомпьютерные системы 2 (стр. 11 из 18)

Существует значительное число признаков, которыми должна обладать задача, чтобы применение НС было оправдано и НС могла бы ее решить:

- отсутствует алгоритм или не известны принципы решения задач, но накоплено достаточное число примеров;

- проблема характеризуется большими объемами входной информации;

- данные неполны или избыточны, зашумлены, частично противоречивы.

Таким образом, НС хорошо подходят для распознавания образов

и решения задач классификации, оптимизации и прогнозирования. Ниже приведен перечень возможных промышленных применений нейронных сетей, на базе которых либо уже созданы коммерческие продукты, либо реализованы демонстрационные прототипы.

Банки и страховые компании:

- автоматическое считывание чеков и финансовых документов;

- проверка достоверности подписей;

- оценка риска для займов;

- прогнозирование изменений экономических показателей.

Административное обслуживание:

- автоматическое считывание документов;

- автоматическое распознавание штриховых кодов.

Нефтяная и химическая промышленность:

- анализ геологической информации;

- идентификация неисправностей оборудования;

- разведка залежей минералов по данным аэрофотосъемок;

- анализ составов примесей;

- управление процессами.

Военная промышленность и аэронавтика:

- обработка звуковых сигналов (разделение, идентификация, локализация, устранение шума, интерпретация);

- обработка радарных сигналов (распознавание целей, идентфикация и локализация источников);

- обработка инфракрасных сигналов (локализация);

- обобщение информации;

- автоматическое пилотирование.

Промышленное производство:

- управление манипуляторами;

- управление качеством;

- управление процессами;

- обнаружение неисправностей;

- адаптивная робототехника;

- управление голосом.

Служба безопасности:

- распознавание лиц, голосов, отпечатков пальцев.

Биомедицинская промышленность:

- анализ рентгенограмм;

- обнаружение отклонений в ЭКГ.

Телевидение и связь:

- адаптивное управление сетью связи;

- сжатие и восстановление изображения.

Представленный перечень далеко не полон. Ежемесячно западные средства массовой информации сообщают о новых коммерческих продуктах на базе нейронных сетей. Так, фирма LIAC выпускает аппаратуру для контроля качества воды. Нейросистемы фирмы SAIC находят пластиковые бомбы в багаже авиапассажиров. Специалисты инвестиционного банка Citicomp (Лондон) с помощью программного нейропакета делают краткосрочные прогнозы колебаний курсов валют.

Представим некоторые проблемы, решаемые в контексте ИНС и представляющие интерес для ученых и инженеров.

Классификация образов. Задача состоит в указании принадлежности входного образа (например, речевого сигнала или рукописного символа), представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.

Кластеризация/категоризация. При решении задачи кластеризации, которая известна также как классификация образов "без учителя", отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что имеется обучающая выборка ((x1,y1), (x2,y2)..., (xn,yn)) (пары данных вход-выход), которая генерируется неизвестной функцией (x), искаженной шумом. Задача аппроксимации состоит в нахождении оценки неизвестной функции (x). Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

Предсказание/прогноз. Пусть заданы n дискретных отсчетов {y(t1), y(t2)..., y(tn)} в последовательные моменты времени t1, t2,..., tn . Задача состоит в предсказании значения y(tn+1) в некоторый будущий момент времени tn+1. Предсказание/прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике. Предсказание цен на фондовой бирже и прогноз погоды являются типичными приложениями техники предсказания/прогноза.

Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию. Задача коммивояжера, относящаяся к классу NP-полных, является классическим примером задачи оптимизации.

Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Ассоциативная память, или память, адресуемая по содержанию, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании мультимедийных информационных баз данных.

Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, а y(t) - выходом системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует по желаемой траектории, диктуемой эталонной моделью. Примером является оптимальное управление двигателем.

Задача прогнозирования

На НС задача прогнозирования формализуется через задачу рас-

познавания образов. Данных о прогнозируемой переменной за некоторый промежуток времени образуют образ, класс которого определяется значением прогнозируемой переменной в некоторый момент времени за пределами данного промежутка т.е. значением переменной через интервал прогнозирования. Метод окон предполагает использование двух окон Wi и Wo с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно Wi, получив такие данные, передает их на вход нейронной сети, а второе - Wo - на выход. Получающаяся на каждом шаге пара

Wi -> Wo (1)

используется как элемент обучающей выборки (распознаваемый образ, или наблюдение).

Например, пусть есть данные о еженедельных продажах режущего инструмента (k = 16):

100 94 90 96 91 94 95 99 95 98 100 97 99 98 96 98 (2)

Зададим n = 4, m = 1, s = 1. С помощью метода окон для нейронной сети будет сгенерирована следующая обучающая выборка:

100 94 90 96 -> 91

94 90 96 91 -> 94

90 96 91 94 -> 95 (3)

96 91 94 95 -> 99

91 94 95 99 -> 95

и т.д.

Каждый следующий вектор получается в результате сдвига окон

Wi и Wo вправо на один элемент (s = 1). Предполагается наличие

скрытых зависимостей во временной последовательности как множестве наблюдений. Нейронная сеть, обучаясь на этих наблюдениях и соответственно настраивая свои коэффициенты, пытается извлечь эти закономерности и сформировать в результате требуемую функцию прогноза P.

Прогнозирование осуществляется по тому же принципу, что и

формирование обучающей выборки. При этом выделяются две возможности: одношаговое и многошаговое прогнозирование.

МНОГОШАГОВОЕ ПРОГНОЗИРОВАНИЕ. Используется для осуществления долгосрочного прогноза и предназначено для определения основного тренда и главных точек изменения тренда для некоторого промежутка времени в будущем. При этом прогнозирующая система использует полученные (выходные) данные для моментов времени k+1, k+2 и т.д. в качестве входных данных для прогнозирования на моменты времени k+2, k+3 и т.д.

Предположим, система обучилась на временной последовательности (2). Затем она спрогнозировала k+1 элемент последовательности, например, равный 95, когда на ее вход был подан последний из известных ей образов (99, 98, 96, 98). После этого она осуществляет дальнейшее прогнозирование и на вход подается следующий образ (98, 96, 98, 95). Последний элемент этого образа является прогнозом системы. И так далее.

ОДНОШАГОВОЕ ПРОГНОЗИРОВАНИЕ. Используется для краткосрочных прогнозов, обычно - абсолютных значений последовательности. Осуществляется прогноз только на один шаг вперед, но используется реальное, а не прогнозируемое значение для осуществления прогноза на следующем шаге.

Для временной последовательности 2. На шаге k+1 система прогнозирует требование 95, хотя реальное значение должно быть 96. На шаге k + 2 в качестве входного образа будет использоваться образ (98, 96, 98, 96).

Как было сказано выше, результатом прогноза на НС является

класс к которому принадлежит переменная, а не ее конкретное значение. Формирование классов должно проводиться в зависимости от того каковы цели прогнозирования. Общий подход состоит в том, что область определения прогнозируемой переменной разбивается на классы в соответствии с необходимой точностью прогнозирования.

Классы могут представлять качественный или численный взгляд на изменение переменной.

Применение нейронных сетей в финансовой сфере

Характерный пример успешного применения нейронных вычислений в финансовой сфере - управление кредитными рисками. Как известно, до выдачи кредита банки проводят сложные статистические расчеты по финансовой надежности заемщика, чтобы оценить вероятность собственных убытков от несвоевременного возврата финансовых средств. Такие расчеты обычно базируются на оценке кредитной истории, динамике развития компании, стабильности ее основных финансовых показателей и многих других факторов. Один широко известный банк США опробовал метод нейронных вычислений и пришел к выводу, что та же задача по уже проделанным расчетам подобного