Смекни!
smekni.com

Нейрокомпьютерные системы 2 (стр. 4 из 18)

В Таблице 2 представлены различные алгоритмы обучения и связанные с ними архитектуры сетей (список не является исчерпывающим). В последней колонке перечислены задачи, для которых может быть применен каждый алгоритм. Каждый алгоритм

обучения ориентирован на сеть определенной архитектуры и предназначен для ограниченного класса задач. Кроме рассмотренных, следует упомянуть некоторые другие алгоритмы: Adaline и Madaline, линейный дискриминантный анализ, проекции Саммона, анализ главных компонентов.

Таблица 2.

Известные алгоритмы обучения.

Парадигма Обучающее правило Архитектура Алгоритм обучения Задача
С учителем Коррекция ошибки Однослойный и многослойный перцептрон Алгоритмы обучения перцептронаОбратное распространениеAdaline и Madaline Классификация образовАппроксимация функцийПредскащание, управление
Больцман Рекуррентная Алгоритм обучения Больцмана Классификация образов
Хебб Многослойная прямого распространения Линейный дискриминантный анализ Анализ данныхКлассификация образов
Соревнование Соревнование Векторное квантование Категоризация внутри класса Сжатие данных
Сеть ART ARTMap Классификация образов
Без учителя Коррекция ошибки Многослойная прямого распространения Проекция Саммона Категоризация внутри класса Анализ данных
Хебб Прямого распространения или соревнование Анализ главных компонентов Анализ данныхСжатие данных
Сеть Хопфилда Обучение ассоциативной памяти Ассоциативная память
Соревнование Соревнование Векторное квантование КатегоризацияСжатие данных
SOM Кохонена SOM Кохонена КатегоризацияАнализ данных
Сети ART ART1, ART2 Категоризация
Смешанная Коррекция ошибки и соревнование Сеть RBF Алгоритм обучения RBF Классификация образовАппроксимация функцийПредсказание, управление

5. Самоорганизующиеся карты Кохонена

Самоорганизующиеся карты Кохонена (SOM) обладают благоприятным свойством сохранения топологии, которое воспроизводит важный аспект карт признаков в коре головного мозга высокоорганизованных животных. В отображении с сохранением топологии близкие входные примеры возбуждают близкие выходные элементы. На рис. 2 показана основная архитектура сети SOM Кохонена. По существу она представляет собой двумерный массив элементов, причем каждый элемент связан со всеми n входными узлами.

Такая сеть является специальным случаем сети, обучающейся методом соревнования, в которой определяется пространственная окрестность для каждого выходного элемента. Локальная окрестность может быть квадратом, прямоугольником или окружностью. Начальный размер окрестности часто устанавливается в пределах от 1/2 до 2/3 размера сети и сокращается согласно определенному закону (например, по экспоненциально убывающей зависимости). Во время обучения модифицируются все веса, связанные с победителем и его соседними элементами.

Самоорганизующиеся карты Кохонена могут быть использованы для проектирования многомерных данных, аппроксимации плотности и кластеризации. Эта сеть успешно применялась для распознавания речи, обработки изображений, в робототехнике и в задачах управления. Параметры сети включают в себя размерность массива нейронов, число нейронов в каждом измерении, форму окрестности, закон сжатия окрестности и скорость обучения.

6.Модели теории адаптивного резонанса

Напомним, что дилемма стабильности-пластичности является важной особенностью обучения методом соревнования. Как обучать новым явлениям (пластичность) и в то же время сохранить стабильность, чтобы существующие знания не были стерты или разрушены?

Карпентер и Гроссберг, разработавшие модели теории адаптивного резонанса (ART1, ART2 и ARTMAP), сделали попытку решить эту дилемму. Сеть имеет достаточное число выходных элементов, но они не используются до тех пор, пока не возникнет в этом необходимость. Будем говорить, что элемент распределен (не распределен), если он используется (не используется). Обучающий алгоритм корректирует имеющийся прототип категории, только если входной вектор в достаточной степени ему подобен. В этом случае они резонируют. Степень подобия контролируется параметром сходства k, 0<k<1, который связан также с числом категорий. Когда входной вектор недостаточно подобен ни одному существующему прототипу сети, создается новая категория, и с ней связывается нераспределенный элемент со входным вектором в качестве начального значения прототипа. Если не находится нераспределенного элемента, то новый вектор не вызывает реакции сети.

Чтобы проиллюстрировать модель, рассмотрим сеть ART1, которая рассчитана на бинарный (0/1) вход. Упрощенная схема архитектуры ART1 [2] представлена на рис. 4. Она содержит два слоя элементов с полными связями.


Рисунок 4.Сеть ART1.

Направленный сверху вниз весовой вектор wj соответствует элементу j входного слоя, а направленный снизу вверх весовой вектор i связан с выходным элементом i; i является нормализованной версией wi . Векторы wj сохраняют прототипы кластеров. Роль нормализации состоит в том, чтобы предотвратить доминирование векторов с большой длиной над векторами с малой длиной. Сигнал сброса R генерируется только тогда, когда подобие ниже заданного уровня.

Модель ART1 может создать новые категории и отбросить входные примеры, когда сеть исчерпала свою емкость. Однако число обнаруженных сетью категорий чувствительно к параметру сходства.

Тема 3. Ассоциативные ИНС.

Модель Маккалоха

Теоретические основы нейроматематики были заложены в начале 40-х годов. В 1943 году У. Маккалох и его ученик У. Питтс сформулировали основные положения теории деятельности головного мозга. Ими были получены следующие результаты:

- разработана модель нейрона как простейшего процессорного

элемента, выполняющего вычисление переходной функции от скалярного произведения вектора входных сигналов и вектора весовых коэффициентов;

- предложена конструкция сети таких элементов для выполнения

логических и арифметических операций;

- сделано основополагающее предположение о том, что такая сеть способна обучаться, распознавать образы, обобщать полученную информацию.

Несмотря на то, что за прошедшие годы нейроматематика ушла

далеко вперед, многие утверждения Макклоха остаются актуальными и поныне. В частности, при большом разнообразии моделей нейронов принцип их действия, заложенный Макклохом и Питтсом, остается неизменным.

Недостатком данной модели является сама модель нейрона -

"пороговой" вид переходной функции. В формализме У. Маккалоха и У. Питтса нейроны имеют состояния 0, 1 и пороговую логику перехода из состояния в состояние. Каждый нейрон в сети определяет взвешенную сумму состояний всех других нейронов и сравнивает ее с порогом, чтобы определить свое собственное состояние. Пороговый вид функции не предоставляет нейронной сети достаточную гибкость при обучении и настройке на заданную задачу. Если значение вычисленного скалярного произведения, даже незначительно, не достигает до заданного порога, то выходной сигнал не формируется вовсе и нейрон "не срабатывает". Это значит, что теряется интенсивность выходного сигнала (аксона) данного нейрона и, следовательно, формируется невысокое значение уровня на взвешенных входах в следующем слое нейронов.

Модель Розенблата

Серьезное развитие нейрокибернетика получила в работах американского нейрофизиолога Френсиса Розенблата (Корнелльский университет). В 1958 году он предложил свою модель нейронной сети.

Розенблат ввел в модель Маккаллока и Питтса способность связей к

модификации, что сделало ее обучаемой. Эта модель была названа

персептроном. Первоначально персептрон представлял собой однослойную структуру с жесткой пороговой функцией процессорного элемента и бинарными или многозначными входами. Первые персептроны были способны распознавать некоторые буквы латинского алфавита. Впоследствии модель персептрона была значительно усовершенствована.

Персептрон применялся для задачи автоматической классификации, которая в общем случае состоит в разделении пространства признаков между заданным количеством классов. В двухмерном случае требуется провести линию на плоскости, отделяющую одну область от другой. Персептрон способен делить пространство только прямыми линиями (плоскостями).

Алгоритм обучения персептрона выглядит следующим образом:

1) системе предъявляется эталонный образ;

2) если выходы системы срабатывают правильно, весовые коэффициенты связей не изменяются;

3) если выходы срабатывают неправильно, весовым коэффициентам дается небольшое приращение в сторону повышения качества распознавания.

Серьезным недостатком персептрона является то, что не всегда

существует такая комбинация весовых коэффициентов, при которой имеющееся множество образов будет распознаваться данным персептроном. Причина этого недостатка состоит в том, что лишь небольшое количество задач предполагает, что линия, разделяющая эталоны, будет прямой. Обычно это достаточно сложная кривая, замкнутая или разомкнутая. Если учесть, что однослойный персептрон реализует только линейную разделяющую поверхность, применение его там, где требуется нелинейная, приводит к неверному распознаванию (эта проблема называется линейной неразделимостью пространства признаков). Выходом из этого положения является использование многослойного персептрона, способного строить ломаную границу между распознаваемыми образами.